164
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel PEG-based hydrogel possessing disulfide bonds: synthesis via click chemistry and study on swelling behavior

ORCID Icon, & ORCID Icon
Pages 362-371 | Received 30 Aug 2023, Accepted 25 Nov 2023, Published online: 29 Nov 2023

References

  • Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/J.EURPOLYMJ.2014.11.024.
  • Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers. 2022, 14(15), 3023. DOI: 10.3390/polym14153023.
  • Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. Int. J. Mol. Sci. 2022, 23(3), 1415. DOI: 10.3390/ijms23031415.
  • Xin, H.; Naficy, S. Drug Delivery Based on Stimuli-Responsive Injectable Hydrogels for Breast Cancer Therapy: A Review. Gels. 2022, 8(1), 45. DOI: 10.3390/gels8010045.
  • Chatterjee, S.; Hui, P. C. Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers. 2021, 13(13), 2086. DOI: 10.3390/polym13132086.
  • Yang, Z.; Chen, L.; McClements, D. J.; Qiu, C.; Li, C.; Zhang, Z.; Miao, M.; Tian, Y.; Zhu, K.; Jin, Z. Stimulus-Responsive Hydrogels in Food Science: A Review. Food Hydrocoll. 2022, 124, 107218. DOI: 10.1016/j.foodhyd.2021.107218.
  • Abdollahiyan, P.; Baradaran, B.; de la Guardia, M.; Oroojalian, F.; Mokhtarzadeh, A. Cutting-Edge Progress and Challenges in Stimuli Responsive Hydrogel Microenvironment for Success in Tissue Engineering Today. J. Control Release. 2020, 328, 514–531. DOI: 10.1016/j.jconrel.2020.09.030.
  • Bingol, B.; Altuncu, S.; Duman, F. D.; Ak, A.; Gulyuz, U.; Acar, H. Y.; Okay, O.; Avci, D. One-Step Injectable and Bioreducible Poly(β-Amino Ester) Hydrogels as Controlled Drug Delivery Platforms. ACS Appl. Polym. Mater. 2019, 1(7), 1724–1734. DOI: 10.1021/acsapm.9b00287.
  • Hu, X.; Wang, Y.; Zhang, L.; Xu, M.; Dong, W.; Zhang, J. Redox/ pH dual Stimuli-Responsive Degradable Salecan-G-SS-Poly(ia-Co-HEMA) Hydrogel for Release of Doxorubicin. Carbohydr. Polym. 2017, 155, 242–251. DOI: 10.1016/j.carbpol.2016.08.077.
  • Liu, H.; Rong, L.; Wang, B.; Xie, R.; Sui, X.; Xu, H.; Zhang, L.; Zhong, Y.; Mao, Z. Facile Fabrication of Redox/pH dual Stimuli Responsive Cellulose Hydrogel. Carbohydr. Polym. 2017, 176, 299–306. DOI: 10.1016/j.carbpol.2017.08.085.
  • Xu, Y.; Liu, J.; Guan, S.; Cao, Y.; Chen, C.; Wang, D. A dual pH and redox-responsive Ag/AgO/carboxymethyl chitosan composite hydrogel for controlled dual drug delivery. J. Biomater. Sci. Polym. Ed. 2020, 31(13), 1706–1721. DOI: 10.1080/09205063.2020.1774118.
  • Mackiewicz, M.; Romanski, J.; Drabczyk, K.; Waleka, E.; Stojek, Z.; Karbarz, M. Degradable, Thermo-, pH- and Redox-Sensitive Hydrogel Microcapsules for Burst and Sustained Release of Drugs. Int. J. Pharm. 2019, 569, 118589. DOI: 10.1016/j.ijpharm.2019.118589.
  • Arjama, M.; Mehnath, S.; Jeyaraj, M. Self-Assembled Hydrogel Nanocube for Stimuli Responsive Drug Delivery and Tumor Ablation by Phototherapy Against Breast Cancer. Int J Biol Macromol. 2022, 213, 435–446. DOI: 10.1016/j.ijbiomac.2022.05.190.
  • Phuong, P. T. M.; Jhon, H.; In, I.; Park, S. Y. Photothermal-Modulated Reversible Volume Transition of Wireless Hydrogels Embedded with Redox-Responsive Carbon Dots. Biomater. Sci. 2019, 7(11), 4800–4812. DOI: 10.1039/C9BM00734B.
  • Kennedy, L.; Sandhu, J. K.; Harper, M.-E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules. 2020, 10(10), 1429. DOI: 10.3390/biom10101429.
  • Schafer, F. Q.; Buettner, G. R. Redox Environment of the Cell as Viewed Through the Redox State of the Glutathione Disulfide/Glutathione Couple. Free Radic Biol Med. 2001, 30(11), 1191–1212. DOI: 10.1016/S0891-5849(01)00480-4.
  • Gamcsik, M. P.; Kasibhatla, M. S.; Teeter, S. D.; Colvin, O. M. Glutathione levels in human tumors. Biomarkers. 2012, 17(8), 671–691. DOI: 10.3109/1354750X.2012.715672.
  • Kaur, J.; Saxena, M.; Rishi, N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjug. Chem. 2021, 32(8), 1455–1471. DOI: 10.1021/acs.bioconjchem.1c00247.
  • Geng, Z.; Shin, J. J.; Xi, Y.; Hawker, C. J. Click Chemistry Strategies for the Accelerated Synthesis of Functional Macromolecules. J Polym Sci. 2021, 59(11), 963–1042. DOI: 10.1002/pol.20210126.
  • Li, X.; Xiong, Y. Application of “Click” Chemistry in Biomedical Hydrogels. ACS Omega. 2022, 7(42), 36918–36928. DOI: 10.1021/acsomega.2c03931.
  • Li, Y.; Wang, X.; Han, Y.; Sun, H.-Y.; Hilborn, J.; Shi, L. Click Chemistry-Based Biopolymeric Hydrogels for Regenerative Medicine. Biomed. Mater. 2021, 16(2), 022003. DOI: 10.1088/1748-605X/abc0b3.
  • Mueller, E.; Poulin, I.; Bodnaryk, W. J.; Hoare, T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules. 2022, 23(3), 619–640. DOI: 10.1021/acs.biomac.1c01105.
  • Bahsis, L.; Ablouh, E.-H.; Anane, H.; Taourirte, M.; Julve, M.; Stiriba, S.-E. Cu(ii)-Alginate-Based Superporous Hydrogel Catalyst for Click Chemistry Azide–Alkyne Cycloaddition Type Reactions in Water. R.S.C. Adv. 2020, 10(54), 32821–32832. DOI: 10.1039/D0RA06410F.
  • Cadamuro, F.; Sampaolesi, S.; Bertolini, G.; Roz, L.; Nicotra, F.; Russo, L. Click Chemistry Protocol for 3D Bioprintable Elastin−Hyaluronic Acid Hydrogels. ChemNanomat. 2023, 9(2), e202200508. DOI: 10.1002/cnma.202200508.
  • Sousa, G. F.; Afewerki, S.; Dittz, D.; Santos, F. E. P.; Gontijo, D. O.; Scalzo, S. R. A.; Santos, A. L. C.; Guimaraes, L. C.; Pereira, E. M.; Barcelos, L. S., et al. Catalyst-Free Click Chemistry for Engineering Chondroitin Sulfate-Multiarmed PEG Hydrogels for Skin Tissue Engineering. J. Funct. Biomater. 2022, 13(2), 45. DOI: 10.3390/jfb13020045.
  • Thi, P. L.; Tran, T. Y. N.; Luu, H. C.; Tran, D. L.; Thi, T. T. H.; Nguyen, D. H. In situ Forming Gelatin: Cyclodextrin Hydrogels Prepared by “Click chemistry” to Improve the Sustained Release of Hydrophobic Drugs. J. Bioact. Compat. Polym. 2022, 37(4), 252–266. DOI: 10.1177/08839115221098058.
  • Mauri, E.; Veglianese, P.; Papa, S.; Mariani, A.; De Paola, M.; Rigamonti, R.; Chincarini, G. M. F.; Vismara, I.; Rimondo, S.; Sacchetti, A., et al. Double conjugated nanogels for selective intracellular drug delivery. R.S.C. Adv. 2017, 7(48), 30345–30356. DOI: 10.1039/C7RA04584K.
  • Rezaei, A.; Khanzadeh, A.; Behniafar, H. PCL-Based Hydrophobic Chains Grafted with Two PEG-Based Hydrophilic Branches: Fluorescence and Dynamic Light Scattering Studies. J. Polym. Res. 2023, 30(2), 91. DOI: 10.1007/s10965-023-03476-1.
  • Rezaei, A.; Behniafar, H. Novel Amphiphilic A2B2 Type Miktoarm Star Polymer with Disulfide Bonds Based on PEG and PCL: Micellization Study. Polym. Bull. 2022, 80(9), 10249–10261. DOI: 10.1007/s00289-022-04564-w.
  • Neises, B.; Steglich, W. Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed. Engl. 1978, 17(7), 522–524. DOI: 10.1002/anie.197805221.
  • Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide−alkyne Cycloaddition. Chem. Rev. 2008, 108(8), 2952–3015. DOI: 10.1021/cr0783479.
  • El Malah, T.; Nour, H. F.; Satti, A. A. E.; Hemdan, B. A.; El-Sayed, W. A. D. Synthesis, and Antimicrobial Activities of 1,2,3-Triazole Glycoside Clickamers. Molecules. 2020, 25(4), 790. DOI: 10.3390/molecules25040790.
  • Bozorov, K.; Zhao, J.; Aisa, H. A. 1,2,3-Triazole-Containing Hybrids as Leads in Medicinal Chemistry: A Recent Overview. Bioorg. Med. Chem. 2019, 27(16), 3511–3531. DOI: 10.1016/j.bmc.2019.07.005.
  • Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAac-Ensembled 1,2,3-Triazole-Linked Isosteres as Pharmacophores in Drug Discovery: Review. R.S.C. Adv. 2020, 10(10), 5610–5635. DOI: 10.1039/C9RA09510A.
  • Wan Ngah, W. S.; Teong, L. C.; Hanafiah, M. A. K. M. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydr. Polym. 2011, 83(4), 1446–1456. DOI: 10.1016/j.carbpol.2010.11.004.
  • Sereshti, H.; Samadi, S.; Asgari, S.; Karimi, M. Preparation and Application of Magnetic Graphene Oxide Coated with a Modified Chitosan PH-Sensitive Hydrogel: An Efficient Biocompatible Adsorbent for Catechin. R.S.C. Adv. 2015, 5(13), 9396–9404. DOI: 10.1039/C4RA11572D.
  • Zhang, W.; Hu, L.; Hu, S.; Liu, Y. Optimized Synthesis of Novel Hydrogel for the Adsorption of Copper and Cobalt Ions in Wastewater. R.S.C. Adv. 2019, 9(28), 16058–16068. DOI: 10.1039/C9RA00227H.
  • Brumberg, V.; Astrelina, T.; Malivanova, T.; Samoilov, A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines. 2021, 9(9), 1235. DOI: 10.3390/biomedicines9091235.
  • Wang, W.; Ummartyotin, S.; Narain, R. Advances and Challenges on Hydrogels for Wound Dressing. Curr. Opin. Biomed. Eng. 2023, 26, 100443. DOI: 10.1016/j.cobme.2022.100443.
  • Cooper, R. C.; Yang, H. Hydrogel-Based Ocular Drug Delivery Systems: Emerging Fabrication Strategies, Applications, and Bench-To-Bedside Manufacturing Considerations. J. Control Release. 2019, 306, 29–39. DOI: 10.1016/j.jconrel.2019.05.034.
  • Li, Z.; Cheng, H.; Ke, L.; Liu, M.; Wang, C.; Jun Loh, X.; Li, Z.; Wu, Y. Recent Advances in New Copolymer Hydrogel‐Formed Contact Lenses for Ophthalmic Drug Delivery. ChemNanomat. 2021, 7(6), 564–579. DOI: 10.1002/cnma.202100008.
  • Cengiz, N. Fabrication of Multifunctional Stimuli‐Responsive Hydrogels Susceptible to Both pH and Metal Cation for Visual Detections. Macromol. Chem. Phys. 2019, 220(17), 1900212. DOI: 10.1002/macp.201900212.
  • Cengiz, N. Glutathione-Responsive Multifunctionalizable Hydrogels via Amine-Epoxy “Click” Chemistry. Eur. Polym. J. 2020, 123, 109441. DOI: 10.1016/j.eurpolymj.2019.109441.
  • Paula, C. T.; Madeira, A. B.; Pereira, P.; Branco, R.; Morais, P. V.; Coelho, J. F. J.; Fonseca, A. C.; Serra, A. C. ROS-Degradable PEG-Based Wound Dressing Films with Drug Release and Antibacterial Properties. Eur. Polym. J. 2022, 177, 111447. DOI: 10.1016/j.eurpolymj.2022.111447.
  • Aydin, D.; Arslan, M.; Sanyal, A.; Sanyal, R. Hooked on cryogels: A carbamate linker based depot for slow drug release. Bioconjug. Chem. 2017, 28(5), 1443–1451. DOI: 10.1021/acs.bioconjchem.7b00140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.