126
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Linear viscoelastic response of polymer melts filled with immiscible nanoparticles

Pages 518-539 | Received 22 Aug 2023, Accepted 06 Dec 2023, Published online: 14 Dec 2023

References

  • Patel, K.; Chikkali, S. H.; Sivaram, S. Ultrahigh Molecular Weight Polyethylene: Catalysis, Structure, Properties, Processing and Applications. Prog. Polym. Sci. 2020, 109, 101290. DOI: 10.1016/j.progpolymsci.2020.101290.
  • Kida, T.; Hiejima, Y.; Nitta, K.-H. Microstructural Interpretation of Influences of Molecular Weight on the Tensile Properties of High-Density Polyethylene Solids Using Rheo-Raman Spectroscopy. Macromolecules. 2020, 54(1), 225–234. DOI: 10.1021/acs.macromol.0c02124.
  • Deplancke, T.; Lame, O.; Rousset, F.; Seguela, R.; Vigier, G. Mechanisms of Chain Reentanglement During the Sintering of UHMWPE Nascent Powder: Effect of Molecular Weight. Macromolecules. 2015, 48(15), 5328–5338. DOI: 10.1021/acs.macromol.5b00618.
  • Potter, D. K.; Rudin, A. Entanglement Spacing Variability in Polystyrenes with Narrow Molecular Weight Distributions. Macromolecules. 1991, 24(1), 213–224. DOI: 10.1021/ma00001a034.
  • Muller, R.; Gerard, E.; Dugand, P.; Rempp, P.; Gnanou, Y. Rheological Characterization of the Gel Point: A New Interpretation. Macromolecules. 1991, 24(6), 1321–1326. DOI: 10.1021/ma00006a017.
  • Chambon, F.; Petrovic, Z. S.; MacKnight, W. J.; Winter, H. H. Rheology of Model Polyurethanes at the Gel Point. Macromolecules. 1986, 19(8), 2146–2149. DOI: 10.1021/ma00162a007.
  • Winter, H. H.; Chambon, F. Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point. J. Rheology. 1986, 30(2), 367–382. DOI: 10.1122/1.549853.
  • Winter, H. H.; Morganelli, P.; Chambon, F. Stoichiometry Effects on Rheology of Model Polyurethanes at the Gel Point. Macromolecules. 1988, 21(2), 532–535. DOI: 10.1021/ma00180a048.
  • Lin, Y.; Mallin, D.; Chien, J.; Winter, H. Dynamic Mechanical Measurement of Crystallization-Induced Gelation in Thermoplastic Elastomeric Poly (Propylene). Macromolecules. 1991, 24(4), 850–854. DOI: 10.1021/ma00004a006.
  • Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W.; Lemstra, P. J. Molar Mass and Molecular Weight Distribution Determination of UHMWPE Synthesized Using a Living Homogeneous Catalyst. Macromolecules. 2010, 43(6), 2780–2788. DOI: 10.1021/ma902297b.
  • Pandey, A.; Champouret, Y.; Rastogi, S. Heterogeneity in the Distribution of Entanglement Density During Polymerization in Disentangled Ultrahigh Molecular Weight Polyethylene. Macromolecules. 2011, 44(12), 4952–4960. DOI: 10.1021/ma2003689.
  • Macosko, C. W.; Miller, D. R. A New Derivation of Average Molecular Weights of Nonlinear Polymers. Macromolecules. 1976, 9(2), 199–206. DOI: 10.1021/ma60050a003.
  • Ren, D.; Zheng, S.; Wu, F.; Yang, W.; Liu, Z.; Yang, M. Formation and Evolution of the Carbon Black Network in Polyethylene/Carbon Black Composites: Rheology and Conductivity Properties. J. Appl. Polym. Sci. 2014, 131(7), 7. DOI: 10.1002/app.39953.
  • Yearsley, K. M.; Mackley, M. R.; Chinesta, F.; Leygue, A. The Rheology of Multiwalled Carbon Nanotube and Carbon Black Suspensions. J. Rheol. 2012, 56(6), 1465–1490. DOI: 10.1122/1.4751871.
  • Song, Y.; Tan, Y.; Zheng, Q. Linear rheology of carbon black filled polystyrene. Polymer. 2017, 112, 35–42. DOI: 10.1016/j.polymer.2017.01.069.
  • Sahebi Jouibari, I.; Haddadi-Asl, V.; Esmaeili, A.; Shahsavari, S.; Mohammadzadeh, F.; Gholami, M.; Mohammadi Hatam, A. Rheological Investigation of Carbon-Based Hybrid Polyurethane Nanocomposites with Continuous Networks. Iran. Polym. J. 2019, 28(9), 801–811. DOI: 10.1007/s13726-019-00745-z.
  • Das, A.; Etemadi, M.; Davis, B. A.; McKnight, S. H.; Williams, C. B.; Case, S. W.; Bortner, M. J. Rheological Investigation of Nylon‐Carbon Fiber Composites Fabricated Using Material Extrusion‐Based Additive Manufacturing. Polym. Compos. 2021, 42(11), 6010–6024. DOI: 10.1002/pc.26281.
  • Arrigo, R.; Malucelli, G. Rheological Behavior of Polymer/Carbon Nanotube Composites: An Overview. Material. 2020, 13(12), 2771. DOI: 10.3390/ma13122771.
  • Liu, Y.; Kumar, S. Polymer/carbon nanotube nano composite fibers–a review. ACS Appl. Mater. Interfaces. 2014, 6(9), 6069–6087. DOI: 10.1021/am405136s.
  • Vega, J. F.; Da Silva, Y.; Vicente-Alique, E.; Nunez-Ramirez, R.; Trujillo, M.; Arnal, M. L.; Müller, A. J.; Dubois, P.; Martinez-Salazar, J. Influence of Chain Branching and Molecular Weight on Melt Rheology and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules. 2014, 47(16), 5668–5681. DOI: 10.1021/ma501269g.
  • Kumar, P.; Maiti, U. N.; Lee, K. E.; Kim, S. O. Rheological properties of graphene oxide liquid crystal. Carbon. 2014, 80, 453–461. DOI: 10.1016/j.carbon.2014.08.085.
  • Niu, R.; Gong, J.; Xu, D.; Tang, T.; Sun, Z.-Y. Influence of Molecular Weight of Polymer Matrix on the Structure and Rheological Properties of Graphene Oxide/Polydimethylsiloxane Composites. Polymer. 2014, 55(21), 5445–5453. DOI: 10.1016/j.polymer.2014.08.056.
  • Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin, R. A., III; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. Graphene Oxide Dispersions: Tuning Rheology to Enable Fabrication. Mater. Horiz. 2014, 1(3), 326–331. DOI: 10.1039/C3MH00144J.
  • Jain, S.; Goossens, J. G.; Peters, G. W.; van Duin, M.; Lemstra, P. J. Strong Decrease in Viscosity of Nanoparticle-Filled Polymer Melts Through Selective Adsorption. Soft Matter. 2008, 4(9), 1848–1854. DOI: 10.1039/b802905a.
  • Elias, L.; Fenouillot, F.; Majesté, J.-C.; Cassagnau, P. Morphology and Rheology of Immiscible Polymer Blends Filled with Silica Nanoparticles. Polymer. 2007, 48(20), 6029–6040. DOI: 10.1016/j.polymer.2007.07.061.
  • Patil, N.; Balzano, L.; Portale, G.; Rastogi, S. Influence of Nanoparticles on the Rheological Behaviour and Initial Stages of Crystal Growth in Linear Polyethylene. Macro. Chem. Phys. 2009, 210(24), 2174–2187. DOI: 10.1002/macp.200900364.
  • Auscher, M.-C.; Fulchiron, R.; Perie, T.; Cassagnau, P. Morphological and Rheological Properties of Zirconia Filled Polyethylene. Polymer. 2017, 132, 174–179. DOI: 10.1016/j.polymer.2017.10.068.
  • Maiti, S.; Mahapatro, P. Melt rheological properties of nickel powder filled polypropylene composites. Polym. Compos. 1988, 9(4), 291–296. DOI: 10.1002/pc.750090408.
  • Irdina, S.; Firouzi, A.; Islam, M. R.; Sumdani, M. G.; Yahaya, A. N. A. Rheological and Mechanical Properties of Polyisobutylene Filled with Nanosilica, Zinc Oxide and Titanium Oxide. In Advanced Transdisciplinary Engineering and Technology, Azman, I., Mohd Amran, D., Andreas, O., Eds.; Switzerland: Springer, 2022; pp. 271–287.
  • Du, F.; Scogna, R. C.; Zhou, W.; Brand, S.; Fischer, J. E.; Winey, K. I. Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity. Macromolecules. 2004, 37(24), 9048–9055. DOI: 10.1021/ma049164g.
  • Wu, D.; Wu, L.; Zhang, M.; Zhao, Y. Viscoelasticity and Thermal Stability of Polylactide Composites with Various Functionalized Carbon Nanotubes. Polym. Degrad. Stab. 2008, 93(8), 1577–1584. DOI: 10.1016/j.polymdegradstab.2008.05.001.
  • Ho Shin, D.; Han Yoon, K.; Hyeong Kwon, O.; Ghyl Min, B.; Ik Hwang, C. Surface Resistivity and Rheological Behaviors of Carboxylated Multiwall Carbon Nanotube‐Filled PET Composite Film. J. Appl. Polym. Sci. 2006, 99(3), 900–904. DOI: 10.1002/app.21982.
  • Li, Y.; Zhu, J.; Wei, S.; Ryu, J.; Sun, L.; Guo, Z. Poly (Propylene)/Graphene Nanoplatelet Nanocomposites: Melt Rheological Behavior and Thermal, Electrical, and Electronic Properties. Macromol. Chem. Phys. 2011, 212(18), 1951–1959. DOI: 10.1002/macp.201100263.
  • Haggenmueller, R.; Fischer, J. E.; Winey, K. I. Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Nucleating and Templating Polyethylene Crystallites. Macromolecules. 2006, 39(8), 2964–2971. DOI: 10.1021/ma0527698.
  • Jo, J. O.; Saha, P.; Kim, N. G.; Ho, C. C.; Kim, J. K. Development of Nanocomposite with Epoxidized Natural Rubber and Functionalized Multiwalled Carbon Nanotubes for Enhanced Thermal Conductivity and Gas Barrier Property. Mater. Des. 2015, 83, 777–785. DOI: 10.1016/j.matdes.2015.06.045.
  • Hu, H.; Lin, J.; Zheng, Q.; Xu, X. Effect of Filler Network on Dynamic Viscoelastic Properties of Uncured Polymethylvinylsiloxanes Filled with Silica and Carbon Black. J. Appl. Polym. Sci. 2006, 99(6), 3477–3482. DOI: 10.1002/app.22933.
  • Wang, M.-J.; Kutsovsky, Y.; Zhang, P.; Murphy, L. J.; Laube, S.; Mahmud, K. New Generation Carbon-Silica Dual Phase Filler Part I. Characterization and Application to Passenger Tire. Rubber Chem. Technol. 2002, 75(2), 247–263. DOI: 10.5254/1.3544975.
  • Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal–Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation. Nature Mater. 2015, 14(1), 48–55. DOI: 10.1038/nmat4113.
  • Penu, C.; Hu, G. H.; Fernandez, A.; Marchal, P.; Choplin, L. Rheological and Electrical Percolation Thresholds of Carbon Nanotube/Polymer Nanocomposites. Polym. Eng. Sci. 2012, 52(10), 2173–2181. DOI: 10.1002/pen.23162.
  • Abbasi, S.; Carreau, P. J.; Derdouri, A.; Moan, M. Rheological Properties and Percolation in Suspensions of Multiwalled Carbon Nanotubes in Polycarbonate. Rheol. Acta. 2009, 48(9), 943–959. DOI: 10.1007/s00397-009-0375-7.
  • Wu, D.; Wu, L.; Zhou, W.; Sun, Y.; Zhang, M. Relations Between the Aspect Ratio of Carbon Nanotubes and the Formation of Percolation Networks in Biodegradable Polylactide/Carbon Nanotube Composites. J. Polym. Sci. B Polym. Phys. 2010, 48(4), 479–489. DOI: 10.1002/polb.21909.
  • Yuan, L.; Wu, D.; Zhang, M.; Zhou, W.; Lin, D. Rheological Percolation Behavior and Isothermal Crystallization of Poly (Butyene Succinte)/Carbon Nanotube Composites. Ind. Eng. Chem. Res. 2011, 50(24), 14186–14192. DOI: 10.1021/ie202039v.
  • Zeiler, R.; Handge, U. A.; Dijkstra, D.; Meyer, H.; Altstädt, V. Influence of Molar Mass and Temperature on the Dynamics of Network Formation in Polycarbonate/Carbon Nanotubes Composites in Oscillatory Shear Flows. Polymer. 2011, 52(2), 430–442. DOI: 10.1016/j.polymer.2010.11.037.
  • Moreira, L.; Fulchiron, R.; Seytre, G.; Dubois, P.; Cassagnau, P. Aggregation of Carbon Nanotubes in Semidilute Suspension. Macromolecules. 2010, 43(3), 1467–1472. DOI: 10.1021/ma902433v.
  • Chatterjee, T.; Krishnamoorti, R. Dynamic Consequences of the Fractal Network of Nanotube-Poly (Ethylene Oxide) Nanocomposites. Phys. Rev. E. 2007, 75(5), 050403. DOI: 10.1103/PhysRevE.75.050403.
  • Chatterjee, T.; Yurekli, K.; Hadjiev, V. G.; Krishnamoorti, R. Single‐Walled Carbon Nanotube Dispersions in Poly (Ethylene Oxide). Adv. Funct. Mater. 2005, 15(11), 1832–1838. DOI: 10.1002/adfm.200500290.
  • Ma, A.; Chinesta, F.; Mackley, M. The Rheology and Modeling of Chemically Treated Carbon Nanotubes Suspensions. J. Rheol. 2009, 53(3), 547–573. DOI: 10.1122/1.3093105.
  • Mitchell, C. A.; Krishnamoorti, R. Dispersion of Single-Walled Carbon Nanotubes in Poly (ε-Caprolactone). Macromolecules. 2007, 40(5), 1538–1545. DOI: 10.1021/ma0616054.
  • Hsieh, A. J.; Moy, P.; Beyer, F. L.; Madison, P.; Napadensky, E.; Ren, J.; Krishnamoorti, R. Mechanical Response and Rheological Properties of Polycarbonate Layered‐Silicate Nanocomposites. Polym. Eng. Sci. 2004, 44(5), 825–837. DOI: 10.1002/pen.20074.
  • Ray, S. S.; Bousmina, M.; Okamoto, K. Structure and Properties of Nanocomposites Based on Poly(butylene Succinate- Co -Adipate) and Organically Modified Montmorillonite. Macro Mater. Eng. 2005, 290(8), 759–768. DOI: 10.1002/mame.200500203.
  • Krishnamoorti, R.; Giannelis, E. P. Rheology of End-Tethered Polymer Layered Silicate Nanocomposites. Macromolecules. 1997, 30(14), 4097–4102. DOI: 10.1021/ma960550a.
  • Durmus, A.; Kasgoz, A.; Macosko, C. W. Linear Low Density Polyethylene (LLDPE)/Clay Nanocomposites. Part I: Structural Characterization and Quantifying Clay Dispersion by Melt Rheology. Polymer. 2007, 48(15), 4492–4502. DOI: 10.1016/j.polymer.2007.05.074.
  • Bailly, M.; Kontopoulou, M.; El Mabrouk, K. Effect of Polymer/Filler Interactions on the Structure and Rheological Properties of Ethylene-Octene Copolymer/Nanosilica Composites. Polymer. 2010, 51(23), 5506–5515. DOI: 10.1016/j.polymer.2010.09.051.
  • Baeza, G. P.; Dessi, C.; Costanzo, S.; Zhao, D.; Gong, S.; Alegria, A.; Colby, R. H.; Rubinstein, M.; Vlassopoulos, D.; Kumar, S. K. Network dynamics in nanofilled polymers. Nat. Commun. 2016, 7(1), 1–6. DOI: 10.1038/ncomms11368.
  • Lozano, K.; Bonilla‐Rios, J.; Barrera, E. A Study on Nanofiber‐Reinforced Thermoplastic Composites (II): Investigation of the Mixing Rheology and Conduction Properties. J. Appl. Polym. Sci. 2001, 80(8), 1162–1172. DOI: 10.1002/app.1200.
  • Roland, C. M. Dynamic Mechanical Behavior of Filled Rubber at Small Strains. J. Rheol. 1990, 34(1), 25–34. DOI: 10.1122/1.550111.
  • Wu, G.; Asai, S.; Sumita, M.; Hattori, T.; Higuchi, R.; Washiyama, J. Estimation of Flocculation Structure in Filled Polymer Composites by Dynamic Rheological Measurements. Colloid Polym. Sci. 2000, 278(3), 220–228. DOI: 10.1007/s003960050035.
  • Wu, G.; Lin, J.; Zheng, Q.; Zhang, M. Correlation Between Percolation Behavior of Electricity and Viscoelasticity for Graphite Filled High Density Polyethylene. Polymer. 2006, 47(7), 2442–2447. DOI: 10.1016/j.polymer.2006.02.017.
  • Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Jiang, Z.-G.; Yu, Z.-Z. The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethylmethacrylate Composites. Carbon. 2012, 50(14), 5117–5125. DOI: 10.1016/j.carbon.2012.06.052.
  • Bai, L.; He, S.; Fruehwirth, J. W.; Stein, A.; Macosko, C. W.; Cheng, X. Localizing Graphene at the Interface of Cocontinuous Polymer Blends: Morphology, Rheology, and Conductivity of Cocontinuous Conductive Polymer Composites. J. Rheol. 2017, 61(4), 575–587. DOI: 10.1122/1.4982702.
  • El Achaby, M.; Arrakhiz, F. E.; Vaudreuil, S.; el Kacem Qaiss, A.; Bousmina, M.; Fassi‐Fehri, O. Mechanical, Thermal, and Rheological Properties of Graphene‐Based Polypropylene Nanocomposites Prepared by Melt Mixing. Polym. Compos. 2012, 33(5), 733–744. DOI: 10.1002/pc.22198.
  • Sadasivuni, K. K.; Ponnamma, D.; Kumar, B.; Strankowski, M.; Cardinaels, R.; Moldenaers, P.; Thomas, S.; Grohens, Y. Dielectric Properties of Modified Graphene Oxide Filled Polyurethane Nanocomposites and Its Correlation with Rheology. Compos. Sci. Technol. 2014, 104, 18–25. DOI: 10.1016/j.compscitech.2014.08.025.
  • Liu, K.; Andablo-Reyes, E.; Patil, N.; Merino, D. H.; Ronca, S.; Rastogi, S. Influence of Reduced Graphene Oxide on the Rheological Response and Chain Orientation on Shear Deformation of High Density Polyethylene. Polymer. 2016, 87, 8–16. DOI: 10.1016/j.polymer.2016.01.056.
  • Ferry, J. D. Viscoelastic Properties of Polymers; United States of America (USA): John Wiley & Sons, 1980.
  • Dealy, J. M.; Read, D. J.; Larson, R. G. Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again; Munich: Carl Hanser Verlag GmbH Co KG, 2018.
  • Larson, R. G. The Structure and Rheology of Complex Fluids; Oxford university press: New York, 1999; Vol. 150.
  • Liu, Y.; Winter, H. H.; Perry, S. L. Linear Viscoelasticity of Complex Coacervates. Adv. Coll. Interf. Sci. 2017, 239, 46–60. DOI: 10.1016/j.cis.2016.08.010.
  • Ramli, H.; Zainal, N. F. A.; Hess, M.; Chan, C. H. Basic Principle and Good Practices of Rheology for Polymers for Teachers and Beginners. Chem Teach Int. 2022, 4(4), 307–326. DOI: 10.1515/cti-2022-0010.
  • Marin, G. Oscillatory Rheometry. In Rheological Measurement, Collyer, A. A., Clegg, D. W., Eds.; Dordrecht: Springer, 1988; pp. 3–46.
  • Djabourov, M.; Nishinari, K.; Ross-Murphy, S. B. Physical Gels from Biological and Synthetic Polymers; Cambridge: Cambridge University Press, 2013.
  • Macosko, C. W. Rheology principles. In Measurements, and Applications, New York, USA: John Wiley & Sons, 1994.
  • Shaw, M. T.; MacKnight, W. J. Introduction to Polymer Viscoelasticity; Hoboken, New Jersey: John Wiley & Sons, 2018.
  • Heinrich, G. Klüppel, M. Recent Advances in the Theory of Filler Networking in Elastomers. Filled Elastomers Drug Delivery Syst. 2002, 160, 1–44.
  • Gusev, A. A. Micromechanical Mechanism of Reinforcement and Losses in Filled Rubbers. Macromolecules. 2006, 39(18), 5960–5962. DOI: 10.1021/ma061308z.
  • Payne, A. R. The Dynamic Properties of Carbon Black‐Loaded Natural Rubber Vulcanizates. Part I. J. Appl. Polym. Sci. 1962, 6(19), 57–63. DOI: 10.1002/app.1962.070061906.
  • Long, D.; Sotta, P. Stress Relaxation of Large Amplitudes and Long Timescales in Soft Thermoplastic and Filled Elastomers. Rheol. Acta. 2007, 46(8), 1029–1044. DOI: 10.1007/s00397-007-0187-6.
  • Zhu, Z.; Thompson, T.; Wang, S.-Q.; von Meerwall, E. D.; Halasa, A. Investigating Linear and Nonlinear Viscoelastic Behavior Using Model Silica-Particle-Filled Polybutadiene. Macromolecules. 2005, 38(21), 8816–8824. DOI: 10.1021/ma050922s.
  • Zhu, A.-J.; Sternstein, S. Nonlinear Viscoelasticity of Nanofilled Polymers: Interfaces, Chain Statistics and Properties Recovery Kinetics. Compos. Sci. Technol. 2003, 63(8), 1113–1126. DOI: 10.1016/S0266-3538(03)00032-0.
  • Abdel-Goad, M.; Pötschke, P. Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. J. Non-Newtonian Fluid Mech. 2005, 128(1), 2–6. DOI: 10.1016/j.jnnfm.2005.01.008.
  • Xu, J.; Chatterjee, S.; Koelling, K. W.; Wang, Y.; Bechtel, S. E. Shear and Extensional Rheology of Carbon Nanofiber Suspensions. Rheol. Acta. 2005, 44(6), 537–562. DOI: 10.1007/s00397-005-0436-5.
  • Eslami, H.; Grmela, M.; Bousmina, M. Linear and Nonlinear Rheology of Polymer/Layered Silicate Nanocomposites. J. Rheol. 2010, 54(3), 539–562. DOI: 10.1122/1.3372720.
  • Pötschke, P.; Abdel-Goad, M.; Alig, I.; Dudkin, S.; Lellinger, D. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer. 2004, 45(26), 8863–8870. DOI: 10.1016/j.polymer.2004.10.040.
  • Krishnamoorti, R.; Yurekli, K. Rheology of Polymer Layered Silicate Nanocomposites. Curr. Opin. Colloid Interface Sci. 2001, 6(5–6), 464–470. DOI: 10.1016/S1359-0294(01)00121-2.
  • Zhang, Q.; Lippits, D. R.; Rastogi, S. Dispersion and Rheological Aspects of SWNTs in Ultrahigh Molecular Weight Polyethylene. Macromolecules. 2006, 39(2), 658–666. DOI: 10.1021/ma051031n.
  • Galgali, G.; Ramesh, C.; Lele, A. A Rheological Study on the Kinetics of Hybrid Formation in Polypropylene Nanocomposites. Macromolecules. 2001, 34(4), 852–858. DOI: 10.1021/ma000565f.
  • Solomon, M. J.; Almusallam, A. S.; Seefeldt, K. F.; Somwangthanaroj, A.; Varadan, P. Rheology of Polypropylene/Clay Hybrid Materials. Macromolecules. 2001, 34(6), 1864–1872. DOI: 10.1021/ma001122e.
  • Ren, J.; Silva, A. S.; Krishnamoorti, R. Linear Viscoelasticity of Disordered polystyrene− Polyisoprene Block Copolymer Based Layered-Silicate Nanocomposites. Macromolecules. 2000, 33(10), 3739–3746. DOI: 10.1021/ma992091u.
  • Liu, K.; Ronca, S.; Andablo-Reyes, E.; Forte, G.; Rastogi, S. Unique Rheological Response of Ultrahigh Molecular Weight Polyethylenes in the Presence of Reduced Graphene Oxide. Macromolecules. 2015, 48(1), 131–139. DOI: 10.1021/ma501729y.
  • Zhang, Q.; Archer, L. A. Poly (Ethylene Oxide)/Silica Nanocomposites: Structure and Rheology. Langmuir. 2002, 18(26), 10435–10442. DOI: 10.1021/la026338j.
  • Jouault, N.; Vallat, P.; Dalmas, F.; Said, S.; Jestin, J.; Boué, F. Well-Dispersed Fractal Aggregates as Filler in polymer− Silica Nanocomposites: Long-Range Effects in Rheology. Macromolecules. 2009, 42(6), 2031–2040. DOI: 10.1021/ma801908u.
  • Aranguren, M. I.; Mora, E.; DeGroot, J. V., Jr; Macosko, C. W. Effect of Reinforcing Fillers on the Rheology of Polymer Melts. J. Rheol. 1992, 36(6), 1165–1182. DOI: 10.1122/1.550306.
  • Osman, M. A.; Atallah, A. Interfacial adhesion and composite viscoelasticity. Macromolecular Rapid Communications. 2006, 27(16), 1380–1385. DOI: 10.1002/marc.200600294.
  • Sternstein, S.; Zhu, A.-J. Reinforcement Mechanism of Nanofilled Polymer Melts as Elucidated by Nonlinear Viscoelastic Behavior. Macromolecules. 2002, 35(19), 7262–7273. DOI: 10.1021/ma020482u.
  • Yurekli, K.; Krishnamoorti, R.; Tse, M.; McElrath, K.; Tsou, A.; Wang, H. C. Structure and Dynamics of Carbon Black‐Filled Elastomers. J. Polym. Sci. B Polym. Phys. 2001, 39(2), 256–275. DOI: 10.1002/1099-0488(20010115)39:2<256:AID-POLB80>3.0.CO;2-Z.
  • Allegra, G.; Raos, G.; Vacatello, M. Theories and Simulations of Polymer-Based Nanocomposites: From Chain Statistics to Reinforcement. Prog. Polym. Sci. 2008, 33(7), 683–731. DOI: 10.1016/j.progpolymsci.2008.02.003.
  • Li, L.; Masuda, T. Effect of Dispersion of Particles on Viscoelasticity of CaCo3‐Filled Polypropylene Melts. Polym. Eng. Sci. 1990, 30(14), 841–847. DOI: 10.1002/pen.760301407.
  • Doi, M.; Edwards, S. F.; Edwards, S. F. The Theory of Polymer Dynamics; New York: oxford university press, 1988; Vol. 73.
  • Pryamitsyn, V.; Ganesan, V. Origins of Linear Viscoelastic Behavior of Polymer− Nanoparticle Composites. Macromolecules. 2006, 39(2), 844–856. DOI: 10.1021/ma051841z.
  • Sarvestani, A. S.; Jabbari, E. Modeling and Experimental Investigation of Rheological Properties of Injectable Poly (Lactide Ethylene Oxide Fumarate)/Hydroxyapatite Nanocomposites. Biomacromolecules. 2006, 7(5), 1573–1580. DOI: 10.1021/bm050958s.
  • Chatterjee, T.; Krishnamoorti, R. Rheology of Polymer Carbon Nanotubes Composites. Soft Matter. 2013, 9(40), 9515–9529. DOI: 10.1039/c3sm51444g.
  • Ray, S. S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28(11), 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002.
  • Senses, E.; Narayanan, S.; Mao, Y.; Faraone, A. Nanoscale Particle Motion in Attractive Polymer Nanocomposites. Physical Review Letters. Phys. Rev. Lett. 2017, 119(23), 237801. DOI: 10.1103/PhysRevLett.119.237801.
  • Ninomiya, K.; Ferry, J. D. Some Approximate Equations Useful in the Phenomenological Treatment of Linear Viscoelastic Data. J. Colloid Sci. 1959, 14(1), 36–48. DOI: 10.1016/0095-8522(59)90067-4.
  • Zhou, K.; Gu, S. Y.; Zhang, Y. H.; Ren, J. Effect of Dispersion on Rheological and Mechanical Properties of Polypropylene/Carbon Nanotubes Nanocomposites. Polym. Eng. Sci. 2012, 52(7), 1485–1494. DOI: 10.1002/pen.23098.
  • Wanjale, S. D.; Jog, J. P. Viscoelastic and Dielectric Behavior of Poly (1‐Butene)/multiwalled Carbon Nanotube Nanocomposites. J. Macromol. Sci. 2006, 45(6), 1053–1064. DOI: 10.1080/00222340600929691.
  • Zare, Y.; Rhee, K. Y. Expression of Normal Stress Difference and Relaxation Modulus for Ternary Nanocomposites Containing Biodegradable Polymers and Carbon Nanotubes by Storage and Loss Modulus Data. Compos. B Eng. 2019, 158, 162–168. DOI: 10.1016/j.compositesb.2018.09.076.
  • Smith, G. D.; Bedrov, D.; Li, L.; Byutner, O. A Molecular Dynamics Simulation Study of the Viscoelastic Properties of Polymer Nanocomposites. J. Chem. Phys. 2002, 117(20), 9478–9489. DOI: 10.1063/1.1516589.
  • Einstein, A. Zur theorie der brownschen bewegung. Annalen der Physik. 1906, 324(2), 371–381. DOI: 10.1002/andp.19063240208.
  • Tuteja, A.; Duxbury, P. M.; Mackay, M. E. Multifunctional Nanocomposites with Reduced Viscosity. Macromolecules. 2007, 40(26), 9427–9434. DOI: 10.1021/ma071313i.
  • Cosgrove, T.; Roberts, C.; Choi, Y.; Schmidt, R. G.; Gordon, G. V.; Goodwin, A. J.; Kretschmer, A. Relaxation Studies of High Molecular Weight Poly (Dimethylsiloxane) S Blended with Polysilicate Nanoparticles. Langmuir. 2002, 18(26), 10075–10079. DOI: 10.1021/la025883h.
  • Kopesky, E. T.; Haddad, T. S.; Cohen, R. E.; McKinley, G. H. Thermomechanical Properties of Poly (Methyl Methacrylate) S Containing Tethered and Untethered Polyhedral Oligomeric Silsesquioxanes. Macromolecules. 2004, 37(24), 8992–9004. DOI: 10.1021/ma048934l.
  • Gordon, G. V.; Schmidt, R. G.; Quintero, M.; Benton, N. J.; Cosgrove, T.; Krukonis, V. J.; Williams, K.; Wetmore, P. M. Impact of Polymer Molecular Weight on the Dynamics of Poly (Dimethylsiloxane)− Polysilicate Nanocomposites. Macromolecules. 2010, 43(23), 10132–10142. DOI: 10.1021/ma100490c.
  • Schmidt, R. G.; Gordon, G. V.; Dreiss, C. A.; Cosgrove, T.; Krukonis, V. J.; Williams, K.; Wetmore, P. M. A Critical Size Ratio for Viscosity Reduction in Poly (Dimethylsiloxane)− Polysilicate Nanocomposites. Macromolecules. 2010, 43(23), 10143–10151. DOI: 10.1021/ma1004919.
  • Merkel, T.; Freeman, B.; Spontak, R.; He, Z.; Pinnau, I.; Meakin, P.; Hill, A. Ultrapermeable, reverse-selective nanocomposite membranes. Science. 2002, 296(5567), 519–522. DOI: 10.1126/science.1069580.
  • Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Van Horn, B.; Kim, H.-C.; Hawker, C. J. Nanoscale Effects Leading to Non-Einstein-Like Decrease in Viscosity. Nature Mater. 2003, 2(11), 762–766. DOI: 10.1038/nmat999.
  • Tuteja, A.; Mackay, M. E.; Hawker, C. J.; Van Horn, B. Effect of Ideal, Organic Nanoparticles on the Flow Properties of Linear Polymers: Non-Einstein-Like Behavior. Macromolecules. 2005, 38(19), 8000–8011. DOI: 10.1021/ma050974h.
  • McLeish, T. C. Tube Theory of Entangled Polymer Dynamics. Ad. Phys. 2002, 51(6), 1379–1527. DOI: 10.1080/00018730210153216.
  • Tuteja, A.; Mackay, M. E.; Narayanan, S.; Asokan, S.; Wong, M. S. Breakdown of the Continuum Stokes− Einstein Relation for Nanoparticle Diffusion. Nano Lett. 2007, 7(5), 1276–1281. DOI: 10.1021/nl070192x.
  • Senses, E.; Ansar, S. M.; Kitchens, C. L.; Mao, Y.; Narayanan, S.; Natarajan, B.; Faraone, A. Small particle driven chain disentanglements in polymer nanocomposites. Physical review letters. Phys. Rev. Lett. 2017, 118(14), 147801. DOI: 10.1103/PhysRevLett.118.147801.
  • Senses, E.; Kitchens, C. L.; Faraone, A. Viscosity Reduction in Polymer Nanocomposites: Insights from Dynamic Neutron and X‐Ray Scattering. J. Polym. Sci. 2022, 60(7), 1130–1150. DOI: 10.1002/pol.20210320.
  • Wang, M.; Hill, R. J. Anomalous bulk viscosity of polymer-nanocomposite melts. Soft Matter. 2009, 5(20), 3940–3953. DOI: 10.1039/b905686f.
  • Nusser, K.; Schneider, G. J.; Pyckhout-Hintzen, W.; Richter, D. Viscosity decrease and reinforcement in polymer–silsesquioxane composites. Macromolecules. 2011, 44(19), 7820–7830. DOI: 10.1021/ma201585v.
  • King, J. A.; Via, M. D.; Keith, J. M.; Morrison, F. A. Effects of Carbon Fillers on Rheology of Polypropylene-Based Resins. J. Compos. Mater. 2009, 43(25), 3073–3089. DOI: 10.1177/0021998309345335.
  • Kharchenko, S. B.; Douglas, J. F.; Obrzut, J.; Grulke, E. A.; Migler, K. B. Flow-Induced Properties of Nanotube-Filled Polymer Materials. Nature Mater. 2004, 3(8), 564–568. DOI: 10.1038/nmat1183.
  • Joshi, M.; Butola, B. S.; Simon, G.; Kukaleva, N. Rheological and Viscoelastic Behavior of Hdpe/octamethyl-POSS Nanocomposites. Macromolecules. 2006, 39(5), 1839–1849. DOI: 10.1021/ma051357w.
  • Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford university press: New York, 2003; Vol. 23.
  • Khanna, Y. P. Rheological Mechanism and Overview of Nucleated Crystallization Kinetics. Macromolecules. 1993, 26(14), 3639–3643. DOI: 10.1021/ma00066a024.
  • Cheng, S.; Chen, X.; Hsuan, Y. G.; Li, C. Y. Reduced Graphene Oxide-Induced Polyethylene Crystallization in Solution and Nanocomposites. Macromolecules. 2012, 45(2), 993–1000. DOI: 10.1021/ma2021453.
  • Li, L.; Li, C. Y.; Ni, C.; Rong, L.; Hsiao, B. Structure and Crystallization Behavior of Nylon 66/multi-Walled Carbon Nanotube Nanocomposites at Low Carbon Nanotube Contents. Polymer. 2007, 48(12), 3452–3460. DOI: 10.1016/j.polymer.2007.04.030.
  • Chae, D. W.; Kim, K. J.; Kim, B. C. Effects of Silicalite-1 Nanoparticles on Rheological and Physical Properties of HDPE. Polymer. 2006, 47(10), 3609–3615. DOI: 10.1016/j.polymer.2006.03.053.
  • Fujiyama, M.; Wakino, T. Structures and Properties of Injection Moldings of Crystallization Nucleator‐Added Polypropylenes. I. Structure–Property Relationships. J. Appl. Polym. Sci. 1991, 42(10), 2739–2747. DOI: 10.1002/app.1991.070421012.
  • Patil, N.; Balzano, L.; Portale, G.; Rastogi, S. A Study on the chain− Particle Interaction and Aspect Ratio of Nanoparticles on Structure Development of a Linear Polymer. Macromolecules. 2010, 43(16), 6749–6759. DOI: 10.1021/ma100636v.
  • Patil, N.; Balzano, L.; Portale, G.; Rastogi, S. Influence of Shear in the Crystallization of Polyethylene in the Presence of SWCNTs. Carbon. 2010, 48(14), 4116–4128. DOI: 10.1016/j.carbon.2010.07.022.
  • Di Maio, E.; Iannace, S.; Sorrentino, L.; Nicolais, L. Isothermal Crystallization in PCL/Clay Nanocomposites Investigated with Thermal and Rheometric Methods. Polymer. 2004, 45(26), 8893–8900. DOI: 10.1016/j.polymer.2004.10.037.
  • Kelarakis, A.; Giannelis, E. P. Crystallization and Unusual Rheological Behavior in Poly (Ethylene Oxide)–Clay Nanocomposites. Polymer. 2011, 52(10), 2221–2227. DOI: 10.1016/j.polymer.2011.03.031.
  • Vega, J.; Martinez-Salazar, J.; Trujillo, M.; Arnal, M.; Muller, A.; Bredeau, S.; Dubois, P. Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules. 2009, 42(13), 4719–4727. DOI: 10.1021/ma900645f.
  • Xu, L.-Y.; Yin, B.; Yan, H.-W.; Ma, A.-P.; Yang, M.-B. Isothermal Crystallization Process of Poly (4-Methyl-1-Pentene)/alkylated Graphene Oxide Nanocomposites: Thermal Analysis and Rheology Study. Rsc. Adv. 2015, 5(100), 82005–82011. DOI: 10.1039/C5RA12254F.
  • Canales, J.; Fernandez, M.; Peña, J. J.; Eugenia Munoz, M.; Santamaria, A. Rheological Methods to Investigate Graphene/Amorphous Polyamide Nanocomposites: Aspect Ratio, Processing, and Crystallization. Polym. Eng. Sci. 2015, 55(5), 1142–1151. DOI: 10.1002/pen.23985.
  • Rostami, A.; Vahdati, M.; Alimoradi, Y.; Karimi, M.; Nazockdast, H. Rheology Provides Insight into Flow Induced Nano-Structural Breakdown and Its Recovery Effect on Crystallization of Single and Hybrid Carbon Nanofiller Filled Poly (Lactic Acid). Polymer. 2018, 134, 143–154. DOI: 10.1016/j.polymer.2017.11.062.
  • Mago, G.; Fisher, F. T.; Kalyon, D. M. Effects of Multiwalled Carbon Nanotubes on the Shear-Induced Crystallization Behavior of Poly (Butylene Terephthalate). Macromolecules. 2008, 41(21), 8103–8113. DOI: 10.1021/ma8008838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.