137
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advance Nanocomposites from Biopolymers and Fillers: Sources, Characterization, and End-Use Applications

Pages 570-604 | Received 23 Aug 2023, Accepted 11 Dec 2023, Published online: 26 Dec 2023

References

  • Chausali, N.; Saxena, J.; Prasad, R. Recent Trends in Nanotechnology Applications of Bio-Based Packaging. J. Agric. Food. Res. 2022, 7(100257), 1–14. DOI: 10.1016/j.jafr.2021.100257.
  • Adegoke, K. A.; Akinnawo, S. O.; Bello, O. S.; Maxakato, N. W.; Adegoke, R. O. MOF-Based Electrocatalyst for Oxygeen Evolution Reaction. In Metal-Organic Framework Based Nanomaterials for Energy Conversion and Storage; Gupta, R. K., Nguyen , T. A., Yasin, G. Eds.; Micro and Nano Technology Series, Elsevier: Amsterdam, Netherlands, 2022; pp. 107–125.
  • Gamage, A.; Thiviya, P.; Mani, S.; Ponnusamy, P. G.; Manamperi, A.; Evon, P.; Merah, O.; Madhujith, T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers. 2022, 14(4578), 1–29. DOI: 10.3390/polym14214578.
  • Honek, J. Bionanotechnology and Bionanomaterials: John Honek Explains the Good Things That Can Come in Very Small Packages. BMC Biochemistry. 2013, 14(29), 1–2. DOI: 10.1186/1471-2091-14-29.
  • Adegoke, K. A. Metal-Organic Frameworks and MOF-Based Materials for Electrocatalytic CO2 Reduction. In Advance Catalyst Based on Metal-Organic Frameworks, 2nd ed.; Gao, J., Abazari, R., Eds.; Bentham Science, 2023; pp. 216–256.
  • Srivastava, A. Recent Developments in Bio-Nanocomposites: A Review. Res. J. Nano Sci Eng. 2018, 2(2), 1–4. DOI: 10.22259/2637-5591.0202001.
  • Basavegowda, N.; Baek, K.-H. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers. 2021, 13(23), 1–23. DOI: https://doi.org/10.3390/polym13234198.
  • Iroegbu, A.; Ray, S. S. Recent Developments and Future Perspectives of Biorenewable Nanocomposites for Advanced Applications. Nanotechnol. Rev. 2022, 11(1), 11: 1696–1721. DOI: 10.1515/ntrev-2022-0105.
  • Scarfato, P.; Di Maio, L.; Incarnato, L. Recent Advances and Migration Issues in Biodegradable Polymers from Renewable Sources for Food Packaging. J. Appl. Polym. Sci. 2015, 42597, 1–11. DOI: 10.1002/APP.42597.
  • Warkara, S. Synthesis and Applications of Biopolymer/FeO Nanocomposites: A Review. J. New Mat. Electrochem. Systems. 2022, 25(1), 7–16. DOI: 10.14447/jnmes.v25i1.a02.
  • Tan, C.; Han, F.; Zhang, S.; Li, P.; Shang, N. Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. Int. J. Mol. Sci. 2021, 22(9663), 1–19. DOI: 10.3390/ijms22189663.
  • Abbas, M. Bio-Based Surface Modification of Wool Fibers by Chitosan-Graphene Quantum Dots Nanocomposites. Iran. J. Chem. Chem. Eng. 2022, 41(7), 1–11.
  • Pramanik, D. Fabrication of Magnetite Nanoparticle Doped Reduced Graphene Oxide Grafted Polyhydroxyalkanoate Nanocomposites for Tissue Engineering Application. R.S.C. Adv. 2016, 6(52), 46116–46133.
  • Nikolic, P. Effect of Sepiolite Organomodification on the Performance of PCL/Sepiolite Nanocomposites. Eur. Polym. J. 2017, 97, 198–209.
  • Silva, F. A. G. S.; Dourado, F.; Gama, M.; Poças, F. Nanocellulose Bio-Based Composites for Food Packaging. Nanomaterials. 2020, 10(10), 1–29. DOI: 10.3390/nano10102041.
  • Xie, E. P; Pollet, E.; Halley, P. J.; Avérous, L. Starch-based nano-biocomposites. Prog. Polym. Sci. 2013, 38(10–11), 1590–1628. DOI: 10.1016/j.progpolymsci.2013.05.002.
  • Chausali, N. S. J. P. R.; Saxena, J.; Prasad, R. Recent Trends in Nanotechnology Applications of Bio-Based Packaging. J. Agric. Food. Res. 2022, 7(100257), 1–14. DOI: 10.1016/j.jafr.2021.100257.
  • Flores, L. F; Famá, L.; Rojas, A. M.; Goyanes, S.; Gerschenson, L. Physical Properties of Tapioca-Starch Edible Films: Influence of Filmmaking and Potassium Sorbate. Food. Res. Int. 2007, 40(2), 257–265. DOI: 10.1016/j.foodres.2006.02.004.
  • Goudarzi, V.; Shahabi-Ghahfarrokhi, I.; Babaei-Ghazvini, A. Preparation of Ecofriendly UV-Protective Food Packaging Material by Starch/TiO2 Bionanocomposite: Characterization. Int. J. Biol. Macromol. 2017, 95, 306–313. DOI: 10.1016/j.ijbiomac.2016.11.065.
  • Jayakumar, A.; Joseph, M. Starch-PVA Composite Films with Zinc-Oxide Nanoparticles and Phytochemicals as Intelligent PH Sensing Wraps for Food Packaging Application. Int. J. Biol. Macromol. 2019, 136, 395–403. DOI: 10.1016/j.ijbiomac.2019.06.018.
  • Le Corre, J.; Bras, J.; Dufresne, A. Starch Nanoparticles: A Review. Biomacromolecules. 2010, 11(5), 1139–1153. DOI: 10.1021/bm901428y.
  • Huang, M.; Yu, J.; Ma, X. High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydr. Polym. 2006, 63(3), 393–399. DOI: 10.1016/j.carbpol.2005.09.006.
  • Takegawa, A.; Murakami, M.; Kaneko, Y.; Kadokawa, J. Preparation of Chitin/Cellulose Composite Gels and Films with Ionic Liquids. Carbohydr. Polym. 2010, 79, 85–90.
  • Park, H.; Lee, W.; Ha, C. Environmentally Friendly Polymer Hybrids. Part 1 Mechanical, Thermal and Barrier Properties of Thermoplastic Starch/Clay Nanocomposites. J. Mater. Sci. 2003, 38, 909–915.
  • Avella, M.; De Vlieger, J.; Errico, M. E.; Fischer, S.; Vacca, P. Biodegradable Starch/Clay Nanocomposite Films for Food Packaging Applications. Food Chem. 2005, 93, 467–474.
  • Pandey, J.; Singh, R. P. Green Nanocomposites from Renewable Resources: Effect of Plasticizer on the Structure and Material Properties of Clay-Filled Starch. Starch. 2005, 57, 8–15.
  • Iman, M.; Maji, T. K. Effect of Crosslinker and Nanoclay on Starch and Jute Fabric Based Green Nanocomposites. Carbohydr. Polym. 2012, 89(1), 290–297. DOI: 10.1016/j.carbpol.2012.03.012.
  • Hassani, F. Preparation and Characterization of Bionanocomposite Films Based on Potato Starch/Halloysite Nanoclay. Int. J. Biol. Macromol. 2014, 67, 446–458.
  • Gao, W.; Dong, H.; Hou, H.; Zhang, H. Effects of Clays with Various Hydrophilicities on Properties of Starch–Clay Nanocomposites by Film Blowing. Carbohydr. Polym. 2012, 88(1), 321–328. DOI: 10.1016/j.carbpol.2011.12.011.
  • Wilhelm, H.; Sierakowski, M.-R.; Souza, G. P.; Wypych, F. Starch Films Reinforced with Mineral Clay. Carbohydr. Polym. 2003, 52(2), 101–110. DOI: 10.1016/S0144-8617(02)00239-4.
  • Rydz, J. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development. Int. J. Mol. Sci. 2015, 16, 564–596.
  • Muller, J. Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials. 2017, 10(952), 22–28.
  • Ayana, B. Highly Exfoliated Eco-Friendly Thermoplastic Starch (TPS)/Poly(lactic Acid) (PLA)/Clay Nanocomposites Using Unmodified Nanoclay. Carbohydr. Polym. 2014, 110, 430–439.
  • Sarazin, P. Binary and Ternary Blends of Polylactide, Polycaprolactone and Thermoplastic Starch. Polymer. 2008, 49, 599–609.
  • Sohier, J. The Potential of Anisotropic Matrices as Substrate for Heart Valve Engineering. Biomaterials. 2014, 35, 1833–1844.
  • Ludueña, L.; Kenny, J. M.; Vázquez, A.; Alvarez, V. A. Effect of Clay Organic Modifier on the Final Performance of PCL/Clay Nanocomposites. Mater. Sci. Eng. A. 2011, 529, 215–223. DOI: 10.1016/j.msea.2011.09.020.
  • Lo, H.; Kuo, H.; Huang, Y. Application of Polycaprolactone as an Anti-Adhesion Biomaterial Film. Artif. Organs. 2010, 34, 648–653.
  • Pérez, C.; Avarez, V.; Mondrago n, I.; Vazquez, A. Mechanical Properties of Layered Silicate/Starch Polycaprolactone Blend Nanocomposites. Polym. Int. 2007, 56, 686–693.
  • Chang, P.; Jian, R.; Yu, J.; Ma, X. Starch-Based Composites Reinforced with Novel Chitin Nanoparticles. Carbohydr. Polym. 2010a, 80, 420–425. DOI: 10.1016/j.carbpol.2009.11.041.
  • Chang, P.; Jian, R.; Yu, J.; Ma, X. Fabrication and Characterisation of Chitosan Nanoparticles/plasticised-Starch Composites. Food Chem. 2010b, 120, 736–740.
  • Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food. Chem. 2018, 66(2), 395–413. DOI: 10.1021/acs.jafc.7b04528.
  • Sriupayo, J.; Supaphol, P.; Blackwell, J.; Rujiravanit, R. Preparation and Characterization of α-Chitin Whisker-Reinforced Chitosan Nanocomposite Films with or without Heat Treatment. Carbohydr. Polym. 2005, 62, 130–136. DOI: 10.1016/j.carbpol.2005.07.013.
  • Chang, P.; Jian, R.; Yu, J.; Ma, X. Starch-Based Composites Reinforced with Novel Chitin Nanoparticles. Carbohydr. Polym. 2010, 80, 420–425. DOI: 10.1016/j.carbpol.2009.11.041.
  • Chang, R.; Jian, R.; Yu, J.; Ma, X. Fabrication and Characterisation of Chitosan Nanoparticles/Plasticised starch Composites. Food Chemistry. 2010, 120, 736–740. DOI: 10.1016/j.foodchem.2009.11.002.
  • Casariego, A.; Souza, B. W. S.; Cerqueira, M. A.; Teixeira, J. A.; Cruz, L.; Díaz, R.; Vicente, A. A. Chitosan/Clay films’ Properties as Affected by Biopolymer and Clay Micro/nanoparticles’ Concentrations. Food Hydrocolloids. 2009, 23, 1895–1902. DOI: 10.1016/j.foodhyd.2009.02.007.
  • Hsu, S.; Wang, M.-C.; Lin, J.-J. Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Appl. Clay Sci. 2012, 56, 53–62. DOI: 10.1016/j.clay.2011.09.016.
  • Abdollahi, M.; Rezaei, M.; Farzi, G. A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J. Food Eng. 2012, 111, 343–350. DOI: 10.1016/j.jfoodeng.2012.02.012.
  • Li, Q.; Zhou, J.; Zhang, L. Structure and Properties of the Nanocomposite Films of Chitosan Reinforced with Cellulose Whiskers. J. Polym. Sci. 2009, 47, 1069–1077.
  • Uddin, A.; Fujie, M.; Sembo, S.; Gotoh, Y. Outstanding Reinforcing Effect of Highly Oriented Chitin Whiskers in PVA Nanocomposites. Carbohydr. Polym. 2012, 87, 799–805.
  • Khan, A.; Khan, R.; Salmieri, S.; Li Tien, C.; Bouchard, J. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym. 2012, 90, 1601–1608.
  • Woranucha, S.; Yoksan, R. Eugenol-Loaded Chitosan Nanoparticles: II. Application in Biobased Plastics for Active Packaging. Carbohydr. Polym. 2013, 96, 586–592.
  • McDonnell, M.; Greeley, D. A.; Kit, K. M.; Keffer, D. J. Molecular Dynamics Simulations of Hydration Effects on Solvation, Diffusivity, and Permeability in Chitosan/Chitin Films. J. Phys. Chem B. 2016, 120, 8997–9010.
  • Brinchi, L.; Cotana, F.; Fortunati, E.; Kenny, J. M. Production of Nanocrystalline Cellulose from Lignocellulosic Biomass: Technology and Applications. Carbohydr. Polym. 2013, 94, 154–169. DOI: 10.1016/j.carbpol.2013.01.033.
  • Dufresne, A. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals. Molecules. 2010, 15(6), 4111–4128. DOI: 10.3390/molecules15064111.
  • Velasquez-Cock, J.; Ramírez, E.; Betancourt, S.; Putaux, J.-L.; Osorio, M.; Castro, C.; Gañán, P.; Zuluaga, R. Influence of the Acid Type in the Production of Chitosan Films Reinforced with Bacterial Nanocellulose. Int. J. Biol. Macromol. 2014, 69, 208–213. DOI: 10.1016/j.ijbiomac.2014.05.040.
  • Samir, M.; Alloin, F.; Dufresne, A. Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules. 2005, 6(2), 612–626. DOI: 10.1021/bm0493685.
  • Pommet, M.; Redl, A.; Guilbert, S.; Morel, M.-H. Intrinsic Influence of Various Plasticizers on Functional Properties and Reactivity of Wheat Gluten Thermoplastic Materials. J. Cereal Sci. 2005, 42, 81–91. DOI: 10.1016/j.jcs.2005.02.005.
  • Chuacharoen, T.; Sabliov, C. M. Stability and Controlled Release of Lutein Loaded in Zein Nanoparticles with and without Lecithin and Pluronic F127 Surfactants. Colloids Surf. A. 2016, 503, 11–18. DOI: 10.1016/j.colsurfa.2016.04.038.
  • Luzi, F.; Fortunati, E.; Puglia, D.; Petrucci, R.; Kenny, J. M.; Torre, L. Study of Disintegrability in Compost and Enzymatic Degradation of PLA and PLA Nanocomposites Reinforced with Cellulose Nanocrystals Extracted from Posidonia Oceanica. Polym. Degrad. Stabil. 2015, 121, 105–115. DOI: 10.1016/j.polymdegradstab.2015.08.016.
  • Wan, Y.; Luo, H.; He, F.; Liang, H.; Huang, Y.; Li, X. L. Mechanical, Moisture Absorption, and Biodegradation Behaviours of Bacterial Cellulose Fibre-Reinforced Starch Biocomposites. Compos. Sci. Technol. 2009, 69, 1212–1217. DOI: 10.1016/j.compscitech.2009.02.024.
  • Tyagi, N.; Suresh, S. Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J. Clean. Prod. 2015, 112, 71–80.
  • Amartınez-Sanz, M.; Lopez‐Rubio, A.; Villano, M.; Oliveira, C. S. S.; Majone, M.; Reis, M.; Lagarón, J. M. Production of Bacterial Nanobiocomposites of Polyhydroxyalkanoates Derived from Waste and Bacterial Nanocellulose by the Electrospinning Enabling Melt Compounding Method. J. Appl. Polym. Sci. 2016, 133, 42486. DOI: 10.1002/app.42486.
  • Ambrosio-Martin, J.; Fabra, M.; Lopez-Rubio, A.; Gorrasi, G. Assessment of Ball Milling as a Compounding Technique to Develop Nanocomposites of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) and Bacterial Cellulose Nanowhiskers. J Polym. Environ. 2016, 24(3), 241–254.
  • Dasgupta, N. Nanotechnology in Food Packaging, In: An Introduction to Food Grade Nanoemulsions, Environmental Chemistry for a Sustainable World; Springer: United States, 2018; pp. 129–150.
  • Sanchez-Garcia, M.; Lagaron, J. M. Novel Clay-Based Nanobiocomposites of Biopolyesters with Synergistic Barrier to UV Light, Gas, and Vapour. J. Appl.Polym. Sci. 2010, 118(1), 188–199. DOI: 10.1002/app.31986.
  • Yu, H.; Qin, Z.; Sun, B.; Yang, X.; Yao, J. Reinforcement of Transparent Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) by Incorporation of Functionalized Carbon Nanotubes as a Novel Bionanocomposite for Food Packaging. Compos. Sci. Technol. 2014, 94, 96–104.
  • Rasal, R.; Hirt, D. E. Toughness Decrease of PLA‐PHBHHx Blend Films Upon Surface‐Confined Photopolymerization. J. Biomed Mater Res Part A Official J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2010, 88(4), 1079–1086.
  • Sanchez-Garcia, M.; Lagaron, J. M. On the Use of Plant Cellulose Nanowhiskers to Enhance the Barrier Properties of Polylactic Acid. Cellulose. 2010, 17, 987–1004. DOI: 10.1007/s10570-010-9430-x.
  • Bonilla, J.; Fortunati, E.; Vargas, M.; Chiralt, A.; Kenny, J. M. Effects of Chitosan on the Physicochemical and Antimicrobial Properties of PLA Films. J. Food Eng. 2013, 119, 236–243. DOI: 10.1016/j.jfoodeng.2013.05.026.
  • Busolo, M.; Lagaron, J. M. Antimicrobial Biocomposites of Melt-Compounded Polylactide Films Containing Silver-Based Engineered Clays. J. Plastic Film Sheeting. 2013, 29, 290–305. DOI: 10.1177/8756087913478601.
  • Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G. M.; Kenny, J. M.; Puglia, D. Synergic Effect of Cellulose and Lignin Nanostructures in PLA Based Systems for Food Antibacterial Packaging. Eur. Polym. J. 2016, 79, 1–12. DOI: 10.1016/j.eurpolymj.2016.04.003.
  • Malinowski, R.; Janczak, K.; Rytlewski, P.; Zuk, T. Influence of Glass Microspheres on Selected Properties of Polylactide Composites. Compos. B Eng. 2015, 76, 13–19.
  • Navarro, M.; Ginebra, M. P.; Planell, J. A.; Barrias, C. C.; Barbosa, M. A. In vitro Degradation Behavior of a Novel Bioresorbable Composite Material Based on PLA and a Soluble CaP Glass. Acta. Biomater. 2005, 1(4), 411–419.
  • Huda, M.; Drzal, L. T.; Mohanty, A. K.; Misra, M. Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites from Poly(lactic Acid) (PLA) and Kenaf Fibers. Compos. Sci. Technol. 2008, 68(2), 424–432.
  • Yan, S.; Yin, J.; Yang, Y.; Dai, Z.; Ma, J.; Chen, X. Surface-Grafted Silica Linked with L-Lactic Acid Oligomer: A Novel Nanofiller to Improve the Performance of Biodegradable Poly(l-Lactide). Polymer. 2007, 48(6), 1688–1694.
  • Zhu, A.; Diao, H.; Rong, Q.; Cai, A. Preparation and properties of polylactide–silica nanocomposites. J. Appl. Polym. Sci. 2010, 116(5), 2866–2873.
  • Chen, B.; Shen, C.; Chen, S.; Chen, A. F. Ductile PLA Modified with Methacryloyloxyalkyl Isocyanate Improves Mechanical Properties. Polymer. 2010, 51(21), 4667–4672.
  • Chen, B.; Shen, C.; Chen, A. F. Preparation of Ductile PLA Materials by Modification with Trimethyl Hexamethylene Diisocyanate. Polym. Bull. 2012, 69(3), 313–322.
  • Wen, X.; Zhang, K.; Wang, Y.; Han, L. Study of the Thermal Stabilization Mechanism of Biodegradable Poly(l‐Lactide)/silica Nanocomposites. Polym. Int. 2011, 60(2), 202–210.
  • Akinnawo, S. Synthesis, Modification, Applications and Challenges of Titanium Dioxide Nanoparticles. Res. J. Nanosci. Eng. 2019, 3(14), 10–22.
  • Nakayama, N.; Hayashi, T. Preparation and Characterization of Poly(l-Lactic Acid)/TiO2 Nanoparticle Nanocomposite Films with High Transparency and Efficient Photodegradability. Polym. Degrad. Stab. 2007, 92(7), 1255–1264.
  • Meng, B.; Tao, J.; Deng, J.; Wu, Z. Toughening of Polylactide with Higher Loading of Nano-Titania Particles Coated by Poly (E-Caprolactone). Mater. Lett. 2011, 65(4), 729–732.
  • Cai, R.; Kubota, Y.; Fujishima, A. Effect of Copper Ions on the Formation of Hydrogen Peroxide from Photocatalytic Titanium Dioxide Particles. J. Catal. 2003, 219(1), 214–218.
  • Akinnawo, S. The Emergence of Nanotechnology and Its Application. Res. J. Nanosci.Eng. 2018, 2(3), 8–12.
  • Murariu, M.; Doumbia, A.; Bonnaud, L.; Dechief, A.; Paint, Y.; Ferrira, M. High-Performance Polylactide/ZnO Nanocomposites Designed for Films and Fibers with Special End-Use Properties. Biomacromolecules. 2011, 12(5), 1762–1771.
  • Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M. PLA-ZnO Nanocomposite Films: Water Vapor Barrier Properties and Specific End-Use Characteristics. Eur. Polymer J. 2013, 49(11), 3471–3482.
  • Anžlovar, A.; Krzan, A.; Zagar, E. Degradation of PLA/ZnO and PHBV/ZnO Composites Prepared by Melt Processing. Arab J. Chem. 2018, 11(3), 343–352.
  • Liang, J.; Zhou, L.; Tang, C.; Tsui, C. Crystalline Properties of Poly(l-Lactic Acid) Composites Filled with Nanometer Calcium Carbonate. Compos. B Eng. 2013, 45(1), 1646–1650.
  • Nekhamanurak, B.; Patanathabutr, P.; Hongsriphan, N. Thermal–Mechanical Property and Fracture Behaviour of Plasticised PLA–CaCo3 Nanocomposite. Plast. Rubber Compos. 2012a, 41(175–179), 4–5.
  • Nekhamanurak, Y.; Patanathabutr, P.; Hongsriphan, N. Mechanical Properties of Hydrophilicity Modified CaCo3-Poly(lactic Acid) Nanocomposite. Int. J. Appl. Phys. Math. 2012b, 2(2), 98.
  • Maglio, G.; Malinconico, M.; Migliozzi, A.; Groeninckx, G. Immiscible Poly(l-lactide)/poly(ε-Caprolactone) Blends: Influence of the Addition of a Poly(l-Lactide) Poly(oxyethylene) Block Copolymer on Thermal Behavior and Morphology. Macromol. Chem. Phys. 2004, 205(7), 946–950.
  • Jiang, L.; Wolcott, M. P.; Zhang, J. Study of Biodegradable Polylactide/Poly (Butylene Adipate-Co-Terephthalate) Blends. Biomacromolecules. 2006, 7(1), 199–207.
  • Sabet, S.; Katbab, A. A. Interfacially Compatibilized Poly(lactic Acid) and Poly(lactic Acid)/Polycaprolactone/Organoclay Nanocomposites with Improved Biodegradability and Barrier Properties: Effects of the Compatibilizer Structural Parameters and Feeding Route. J. Appl. Polym. S. 2009, 111(4), 1954–1963.
  • Li, Q. Thermal and Biodegradable Properties of Poly (L-lactide)/poly(ε-Caprolactone) Compounded with Functionalized Organoclay. J Polym. Environ. 2011, 19(1), 59–68.
  • Dasan, Y.; Bhat, A. H.; Ahmad, F. Polymer Blend of PLA/PHBV Based Bionanocomposites Reinforced with Nanocrystalline Cellulose for Potential Application as Packaging Material. Carbohydr. Polym. 2017, 157, 1323–1332. DOI: 10.1016/j.carbpol.2016.11.012.
  • Sarazin, P.; Li, G.; Orts, W. J.; Favis, B. D. Binary and Ternary Blends of Polylactide, Polycaprolactone and Thermoplastic Starch. Polymer. 2008, 49(2), 599–609. DOI: 10.1016/j.polymer.2007.11.029.
  • Kumar, A.; Negi, Y.; Bhardwaj, N.; Choudhary, V. Synthesis and Characterization of Cellulose Nanocrystals/PVA Based Bionanocomposite. Adv. Mat. Lett. 2013, 4(8), 626–631. DOI: 10.5185/amlett.2012.12482.
  • Yusefi, M.; Chan, H.; Teow, S.; Kia, P.; Soon, M.; Sidik, N. A.; Shameli, K. 5-Fluorouracil Encapsulated Chitosan-Cellulose Fiber Bionanocomposites: Synthesis, Characterization and in vitro Analysis Towards Colorectal Cancer Cells. Nanomaterials. 2021, 11(1691), 1–12. DOI: 10.3390/nano11071691.
  • Montero, B.; Rico, M.; Barral, L.; Bouza, R.; López, J.; Schmidt, A.; Bittmann-Hennes, B. Preparation and Characterization of Bionanocomposite Films Based on Wheat Starch and Reinforced with Cellulos. Cellulose. 2021, 28, 7781–7793. 2021. DOI: 10.1007/s10570-021-04017-z.
  • Ediyilyam, S.; Lalitha, M. M.; George, B.; Shankar, S. S.; Wacławek, S.; Černík, M.; Padil, V. V. T. Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites. Polymers. 2022, 14(3), 1–15. DOI: 10.3390/polym14030463.
  • Seol, Y. J.; Lee, J.; Park , Y.; Lee, Y.; Rhyu, I.; Lee, S.; Han, S.; Chung, C. Chitosan Sponges as Tissue Engineering Scaffolds for Bone Formation. Biotech. Lett. 2004, 26, 1037–1041.
  • Yin, Y.; Ye, F.; Cui, J.; Zhang, F.; Li, X.; Yao, K. Preparation and Characterization of Macroporous Chitosan–Gelatin/b‐tricalcium Phosphate Composite Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. Part A. 2003, 67, 844–855.
  • Anitha, A.; Sowmya, S.; Kumar, P. T.; Deepthi, S.; Chennazhi, K. P. Chitin and Chitosan in Selected Biomedical Applications. Prog. Polym. Sci. 2014, 39, 1644–1667.
  • Abdel-Fattah, W.; Jiang, T.; El-Bassyouni, G.; Laurencin, C. T. Synthesis, Characterization of Chitosans and Fabrication of Sintered Chitosan Microsphere Matrices for Bone Tissue Engineering. Acta Biomater. 2007, 3, 503–514.
  • Jiang, T.; Abdul-Fattah, W.; Laurencin, C. T. In vitro Evaluation of Chitosan/poly(lactic acid-Glycolic Acid) Sintered Microsphere Scaffolds for Bone Tissue Engineering. Biomaterials. 2006, 27, 4894–4903.
  • Jiang, T.; Nakavarapu, S. P.; Deng, M.; Jabbarzadeh, E.; Kofron, M. D.; Doty, S. B.; Abdul-Fattah, W.; Laurencin, C. T. Chitosan–poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomater. 2010, 6, 3457–3470.
  • Glimcher, M. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation. Rev Mineral Geochem. 2006, 64, 223–282.
  • Chang, C.; Peng, N.; He, M.; Teramoto, Y.; Nishio, Y.; Zhang, L. Fabrication and Properties of Chitin/Hydroxyapatite Hybrid Hydrogels as Scaffold Nano-Materials. Carbohydr. Polym. 2013, 91, 7–13.
  • Hu, Q.; Li, B.; Wang, M.; Shen, J. Preparation and Characterization of Biodegradable Chitosan/Hydroxyapatite Nanocomposite Rods via in situ Hybridization: A Potential Material as Internal Fixation of Bone Fracture. Biomaterials. 2004, 25, 779–785.
  • Nonato, R.; Mei, L.; Bonse, B.; Leal, C.; Levy, C.; Oliveira, F.; Delarmelina, C.; Duarte, M.; Morales, A. Nanocomposites of PLA/ZnO Nanofibers for Medical Applications: Antimicrobial Effect, Thermal, and Mechanical Behavior under Cyclic Stress. Polym. Eng. Sci. 2022, 62, 1147–1155.
  • Tuli, R.; Li, W.; Tuan, R. S. Current State of Cartilage Tissue Engineering. Arthritis Res. Ther. 2003, 5, 235.
  • Athanasiou, K.; Shah, A. R.; Hernandez, R. J.; LeBaron, R. G. Basic Science of Articular Cartilage Repair. Clin Sports Med. 2001, 20, 223–247.
  • Kosher, R.; Lash, J. W.; Minor, R. R. Environmental Enhancement of in vitro Chondrogenesis: IV. Stimulation of Somite Chondrogenesis by Exogenous Chondromucoprotein. Dev. Biol. 1973, 35, 210–220.
  • Griffon, D.; Sedighi, M. R.; Schaeffer, D. V.; Eurell, J. A.; Johnson, A. L. Chitosan Scaffolds: Interconnective Pore Size and Cartilage Engineering. Acta. Biomater. 2006, 2, 313–320.
  • Nettles, D.; Elder, S. H.; Gilbert, J. A. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng. 2002, 8, 1009–1016.
  • Iwasaki, N.; Yamane, S.; Majima, T.; Kasahara, Y.; Minami, A. Feasibility of Polysaccharide Hybrid Materials for Scaffolds in Cartilage Tissue Engineering: Evaluation of Chondrocyte Adhesion to Polyion Complex Fibers Prepared from Alginate and Chitosan. Biomacromolecules. 2004, 5, 828–833.
  • Cui, Y.; Qi, D. A.; Liu, G.; Wang, X. H.; Wang, H.; Ma, D. M.; Yao, K. D. Biomimetic Surface Modification of Poly(l-Lactic Acid) with Chitosan and Its Effects on Articular Chondrocytes in vitro. Biomaterials. 2003, 24, 3859–3868.
  • Lee, J. E.; Kim, K. E.; Kwon, I. C.; Ahn, J. H.; Lee, S.; Cho, H. Effects of the Controlled-Released TGF-B1 from Chitosan Microspheres on Chondrocytes Cultured in a Collagen/Chitosan/Glycosaminoglycan Scaffold. Biomaterials. 2004, 25, 4163–4173.
  • Hao, T.; Wen, N.; Cao, J. K.; Wang, H. B.; Lu, S. H.; Lin, Q. X.; Duan, C. M.; Wnag, C. Y. The Support of Matrix Accumulation and the Promotion of Sheep Articular Cartilage Defects Repair in vivo by Chitosan Hydrogels. Osteoarthritis And Cartilage. 2010, 18, 257–265.
  • Jin, R.; Moreira, L. S.; Dijkstra, P. J.; Karperien, M.; van Blitterswijk, C. A. Injectable Chitosan-Based Hydrogels for Cartilage Tissue Engineering. Biomaterials. 2009, 30, 2544–2551.
  • Lu, J.; Prudhommeaux, F.; Meunier, S.; Sedel, L.; Guillemin, G. Effects of Chitosan on Rat Knee Cartilages. Biomaterials. 1999, 20, 1937–1944.
  • Park, H.; Choi, B.; Hu, J.; Lee, M. Injectable Chitosan Hyaluronic Acid Hydrogels for Cartilage Tissue Engineering. Acta. Biomater. 2013, 9, 4779–4786.
  • Tan, H.; Chu, C. R.; Payne, K. A.; Marra, K. G. Injectable in situ Forming Biodegradable Chitosan–Hyaluronic Acid Based Hydrogels for Cartilage Tissue Engineering. Biomaterials. 2009, 30, 2499–2506.
  • Buttafoco, L.; Engbers-Buuhtenhuijs, P.; Poot, A. A.; Dijkstra, P. J.; Daamen, W. F. First Steps Towards Tissue Engineering of Small-Diameter Blood Vessels: Preparation of Flat Scaffolds of Collagen and Elastin by Means of Freeze Drying. J. Biomed. Mater. Res. B Appl. Biomater. 2006a, 77B, 357–368. DOI: 10.1002/jbm.b.30444.
  • Buttafoco, L.; Kolkman, N. G.; Poot, A. A.; Dijkstra, P. J. Electrospinning of Collagen and Elastin for Tissue Engineering Applications. Biomaterials. 2006b, 27, 724–734. DOI: 10.1016/j.biomaterials.2005.06.024.
  • Silva, N.; Velila, C.; Marrucho, I. M.; Freire, C. Protein-Based Materials: From Sources to Innovative Sustainable Materials for Biomedical Applications. J. Mater. Chem. B. 2014, 2, 3715. DOI: 10.1039/c4tb00168k.
  • Yang, Z.; Xu, L. S.; Yin, F.; Shi, Y. Q.; Han, Y. In vitro and in vivo Characterization of Silk Fibroin/Gelatin Composite Scaffolds for Liver Tissue Engineering: SF/G as Liver Tissue Engineering. J. Dig. Dis. 2012, 13, 168–178. DOI: 10.1111/j.1751-2980.2011.00566.x.
  • Lee, J.; Kim, J. H.; Lee, O. J.; Park, C. H. The Fixation Effect of a Silk Fibroin–Bacterial Cellulose Composite Plate in Segmental Defects of the Zygomatic Arch: An Experimental Study. JAMA Otolaryngol Neck Surg. 2013, 139, 629–635.
  • Shang, S.; Zhu, L.; Fan, J. Physical Properties of Silk Fibroin/Cellulose Blend Films Regenerated from the Hydrophilic Ionic Liquid. Carbohydr. Polym. 2011, 86, 462–468. DOI: 10.1016/j/123.
  • Choi, Y.; Jin, H.; Cho, S. Enhanced Mechanical Properties of Silk Fibroin-Based Composite Plates for Fractured Bone Healing. Fibers Polym. 2013, 14, 266–270. DOI: 10.1007/s12221-013-0266-5.
  • Hu, J.; Chen, B.; Guo, F.; Du, J.; Gu, P.; Yang, W.; Zhang, H.; Lu, M.; Huang, Y.; Xu, G. Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement. J. Mater. Sci. Mater. Med. 2012, 23, 711–722. DOI: 10.1007/s10856-011-4533-y.
  • Li, X.; Ma, X.; Fan, D.; Zhu, C. New Suitable for Tissue Reconstruction Injectable Chitosan/collagen-Based Hydrogels. Soft Matter. 2012, 8, 3781. DOI: 10.1039/c2sm06994f.
  • Juncosa-Melvin, N.; Shearn, J. T.; Boivin, G. P.; Gooch, C.; Glloway, M. T.; West, J. R.; Nirmalanandhan, V. S.; Bradica, G. V. Effects of Mechanical Stimulation on the Biomechanics and Histology of Stem Cell–Collagen Sponge Constructs for Rabbit Patellar Tendon Repair. Tissue Eng. 2006, 12, 2291–2300.
  • Kim, I.; Seo, S.; Moon, H.; Yoo, M.; Park, I. Chitosan and Its Derivatives for Tissue Engineering Applications. Biotechnol. Adv. 2008, 26, 1–21.
  • Li, J.; Pan, L.; Zhang, L.; Guo, X.; Yu, Y. Culture of Primary Rat Hepatocytes within Porous Chitosan Scaffolds. J. Biomed. Mater. Res. Part A. 2003a, 67, 938–943.
  • Li, J.; Pan, J.; Zhang, L.; Yu, Y. Culture of Hepatocytes on Fructose-Modified Chitosan Scaffolds. Biomaterials. 2003b, 24, 2317–2322.
  • Lindahl, U.; Hook, M. Glycosaminoglycans and Their Binding to Biological Macromolecules. Annu Rev. Biochem. 1978, 47, 385–417.
  • Wang, X.; Li, D. P.; Wang, W. J.; Feng, Q. L.; Cui, F. Z.; Xu, Y. X.; Song, X. H. Crosslinked Collagen/Chitosan Matrix for Artificial Livers. Biomaterials. 2003, 24, 3213–3220.
  • Haipeng, G.; Yinghui, Z.; Jianchun, L.; Yandao, G.; Nznming, Z.; Xiufang, Z. Studies on Nerve Cell Affinity of Chitosan-Derived Materials. J. Biomed. Mater. Res. 2000, 52, 285–295.
  • Yuan, Y.; Zhang, P.; Yang, Y.; Wang, X.; Gu, X. The Interaction of Schwann Cells with Chitosan Membranes and Fibers in vitro. Biomaterials. 2004, 25, 4273–4278.
  • Chávez‐Delgado, M.; Mora-Galindo, J.; Gomez-pinedo, U.; Feria-Velasco, A. Facial Nerve Regeneration Through Progesterone‐Loaded Chitosan Prosthesis. A Preliminary Report. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 67, 702–711.
  • Freier, T.; Montenegro, M.; Koh, H. S.; Shoichet, M. S. Chitin-Based Tubes for Tissue Engineering in the Nervous System. Biomaterials. 2005, 26, 4624–4632.
  • Sahithi, K.; Swetha, M.; Ramasamy, K.; Srinivasan, M.; Selvamurugan, N. Polymeric Composites Containing Carbon Nanotubes for Bone Tissue Engineering. Int J Biol Macromol. 2010, 46, 281–283.
  • Kirdponpattara, S.; Khamkeaw, A.; Sanchanvanakit, N.; Pavasant, P.; Phisalaphong, M. Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr. Polym. 2015, 132, 146–155.
  • Busuioc, C.; Stroesu, M.; Stoica-Guzun, A.; Voicu, G.; Jinga, S. Fabrication of 3D Calcium Phosphates Based Scaffolds Using Bacterial Cellulose as Template. Ceram. Int. 2016, 42(14), 15449–15458.
  • Hoffman, A. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. DOI: 10.1016/j.addr.2012.09.010.
  • Elia, R.; Newhide, D. R.; Padevillno, P. D.; Reiss, G. R.; Firpo, M. A.; Hsu, E. W.; Kaplan, D. L.; Prestwich, G. D.; Peatite, R. A. Silk–hyaluronan-based composite hydrogels: a novel, securable vehicle for drug delivery. J. Biomater. Appl. 2013, 27(6), 749–762.
  • Jayakumar, R.; Prabaharam, M.; Nair, S. V.; Tamura, H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 2010, 28, 142–150.
  • Dev, A.; Binlula, N. S.; Anitha, A.; Nair, S. V.; Furuike, T.; Tamura, H.; Jayakumar, R. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr. Polym. 2010, 80, 833–838.
  • Ye, B.; Zheng, R.; Ruan, X.; Zheng, Z.; Cai, H. Chitosan-Coated Doxorubicin Nano-Particles Drug Delivery System Inhibits Cell Growth of Liver Cancer via P 53/PRC1 Pathway. Biochem. Biophys. Res. Commun. 2018, 495, 414–420. DOI: 10.1016/j.bbrc.2017.10.156.
  • Juncu, G.; Stoica-Guzun, A.; Stroescu, M.; Isopencu, G.; Jinga, S. I. Drug release kinetics from carboxymethyl cellulose-bacterial cellulose composite films. Int. J. Pharm. 2015, 510(2), 485–492.
  • Luo, H.; Haiyong, A.; Gen, L.; Wei, L.; Guangyao, X.; Yong, Z.; Yizao, W. Advanced Nano- and Bio-Materials: A Pharmaceutical Approach Bacterial Cellulose/Graphene Oxide Nanocomposite as a Novel Drug Delivery System. Curr. Appl. Phys. 2017, 17(2), 249–254.
  • Zhang, Z.; Liu, S.; Xiong, H.; Jing, X.; Xie, Z.; Chen, X.; Huang, Y. Electrospun PLA/MWCNTs Composite Nanofibers for Combined Chemo- and Photothermal Therapy. Acta. Biomater. 2015, 26, 115–123.
  • Li, Z.; Zhang, F.; Pan, L.; Zhu, X.; Zhang, Z. Preparation and Characterization of Injectable Mitoxantrone Poly (Lactic Acid)/Fullerene Implants for in vivo Chemo-Photodynamic Therapy. J. Photochem. Photobiol. B Biol. 2015, 149, 51–57.
  • Bajpai, S.; Ahuja, S.; Chand, N.; Bajpai, M. Nano Cellulose Dispersed Chitosan Film with Ag NPs/Curcumin: An in vivo Study on Albino Rats for Wound Dressing. Int. J. Biol. Macromol. 2017, 104, 1012–1019. DOI: 10.1016/j.ijbiomac.2017.06.096.
  • Sudheesh Kumar, P. T. Flexible and Microporous Chitosan Hydrogel/Nano ZnO Composite Bandages for Wound Dressing: In vitro and in vivo Evaluation. ACS Appl. Mater. Interfaces. 2012, 4, 2618–2629. DOI: 10.1021/am300292v.
  • Wu, J.; Zheng, Y.; Song, W.; Luan, J.; Wen, X.; Wu, Z.; Chen, X.; Wang, Q.; Guo, S. Situ Synthesis of Silver-Nanoparticles/bacterial Cellulose Composites for Slow-Released Antimicrobial Wound Dressing. Carbohydr. Polym. 2014, 102, 762–771.
  • Lin, W.; Lien, C.; Yeh, H.; Yu, C.; Hsu, S. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr. Polym. 2013, 94(1), 603–611.
  • Ul-Islam, M.; Khan, T.; Park, J. K. Nanoreinforced Bacterial Cellulose–Montmorillonite Composites for Biomedical Applications. Carbohydr. Polym. 2012, 89(4), 1189–1197.
  • Rashedi, S.; Khajavi, R.; Rashidi, A.; Rahimi, M.; Bahador, A. Novel PLA/ZnO Nanofibrous Nanocomposite Loaded with Tranexamic Acid as an Effective Wound Dressing: In Vitro and in vivo Assessment. Iran. J. Biotechnol. 2021, 9, 38–47.
  • Tsai, G.; Su, W.; Chen, H.; Pan, C. Antimicrobial Activity of Shrimp Chitin and Chitosan from Different Treatments and Applications of Fish Preservation. Fish. Sci. 2002, 68, 170–177.
  • Kim, K.; Thomas, R. L.; Lee, C.; Park, H. J. Antimicrobial Activity of Native Chitosan, Degraded Chitosan, and O-Carboxymethylated Chitosan. J. Food Prot. 2003, 66, 1495–1498.
  • Liu, H.; Du, Y.; Wang, X.; Sun, L. Chitosan Kills Bacteria Through Cell Membrane Damage. Int. J. Food Microbiol. 2004, 95, 147–155.
  • Ajisafe, M.; Akinnawo, S. O. Isolation and Anti-Bacterial Activity of the Active Components from the Stem- -Back of Enantial Chlorantha. Eur. J. Med. Plants. 2018, 22(1), 1–7. DOI: 10.9734/EJMP/2018/38174.
  • Rajaei, A.; Hadian, M.; Mohsenifar, A. A Coating Based on Clove Essential Oils Encapsulated by Chitosan-Myristic Acid Nanogel Efficiently Enhanced the Shelf-Life of Beef Cutlets. Food Packag. Shelf Life. 2017, 14, 137–145.
  • Hadian, R.; Rajaei, A.; Mohsenifar, A.; Tabatabaei, M. Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT-Food Sci. Technol. 2017, 84, 394–401.
  • Azevedo, B.; Buarque, P. R.; Cruz, E. M. Response Surface Methodology for Optimisation of Edible Chitosan Coating Formulations Incorporating Essential Oil Against Several Foodborne Pathogenic Bacteria. Food Control. 2014, 43, 1–9.
  • Oh, O.; Oh, Y.; Song, A. Y.; Won, J. S.; Song, K. B.; Min, S. C. Comparison of Effectiveness of Edible Coatings Using Emulsions Containing Lemongrass Oil of Different Size Droplets on Grape Berry Safety and Preservation. LWT. Food Sci. Technol. 2017, 75, 742–750. DOI: 10.1016/j/123.
  • De Aquino, B.; Blank, A. F.; Santana, L. C. Impact of Edible Chitosan-Cassava Starch Coatings Enriched with Lippia Gracilis Schauer Genotype Mixtures on the Shelf Life of Guavas (Psidium Guajava L.) During Storage at Room Temperature. Food Chem. 2015, 171, 108–116.
  • Severino, F.; Ferrari, G.; Vu, K.; Donsi, F. Antimicrobial Effects of Modified Chitosan Based Coating Containing Nanoemulsion of Essential Oils, Modified Atmosphere Packaging and Gamma Irradiation Against Escherichia coli O157: H7 and Salmonella Typhimurium on Green Beans. Food Control. 2015, 50, 215–222. DOI: 10.1016/j.foodcont.2014.08.029.
  • Thangvaravut, C. Inhibitory Effect of Chitosan Films Incorporated with 1,8-Cineole on SALMONELLA Attached on Model Food Surface. 2012, 506. DOI: 10.4028/www.scientific.net/AMR.506.599.
  • Pelissari, G.; Grossmann, M. V. E.; Yamashita, F.; Pineda, E. A. Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. J. Agric. Food. Chem. 2009, 57, 7499–7504. DOI: 10.1021/jf9002363.
  • Shahbazi, Y. The Properties of Chitosan and Gelatin Films Incorporated with Ethanolic Red Grape Seed Extract and Ziziphora Clinopodioides Essential Oil as Biodegradable Materials for Active Food Packaging. Int. J. Biol. Macromol. 2017, 99, 746–753. DOI: 10.1016/j.ijbi.
  • Chaleshtori, F. S.; Taghizadeh, M.; Rafieian-Kopaei, M. Effect of Chitosan Incorporated with Cumin and Eucalyptus Essential Oils as Antimicrobial Agents on Fresh Chicken Meat. J. Food Process Preserv. 2016, 40, 396–404.
  • Chaleshtori, R. S.; Taghizadeh, M.; Khanalizadeh, A.; Hesami, S.; Ketami, M. The Effects of Chitosan Incorporated with Eucalyptus and Cuminum Essential Oils on Storage Time of Oncorhynchus Mykiss. J. Mazandaran Univ. Med. Sci. 2016, 25, 150–161.
  • Da Silva, I.; Iamanaka, B. T.; Taniwaki, M. H.; Kieckbusch, T. G. Evaluation of the Antimicrobial Potential of Alginate and Alginate/Chitosan Films Containing Potassium Sorbate and Natamycin. Packag. Technol. Sci. 2003, 26, 479–492. DOI: 10.1002/pts.2000.
  • Sun, S.; Sui, S.; Ference, C.; Zhang, Y.; Sun, S.; Zhou, N.; Zhu, W.; Zhou, K. Antimicrobial and Mechanical Properties of β-Cyclodextrin Inclusion with Essential Oils in Chitosan Films. J. Agric. Food. Chem. 2014, 62, 8914–8918. DOI: 10.1021/jf5027873.
  • Higueras, C.; Lopez-Carballo, G.; Hernandez-Munoz, P.; Catala, R.; Gavara, R. Antimicrobial Packaging of Chicken Fillets Based on the Release of Carvacrol from Chitosan/Cyclodextrin Films. Int. J. Food Microbiol. 2014, 188, 53–59.
  • Khwaldia, B. Chitosancaseinate bilayer coatings for paper packaging materials. Carbohydr. Polym. 2014, 99, 508–516.
  • Song, Z.; Feng, L.; Guan, H.; Xu, Y.; Fu, Q.; Li, D. Combination of Nisin and E-Polylysine with Chitosan Coating Inhibits the White Blush of Fresh-Cut Carrots. Food Control. 2017, 74, 34–44.
  • Kosaraju, W. Chitosan-glucose Conjugates: Influence of Extent of Maillard Reaction on Antioxidant Properties. J. Agric. Food. Chem. 2010, 58, 12449–12455.
  • Yuceer, M.; Caner, C. Antimicrobial Lysozyme–Chitosan Coatings Affect Functional Properties and Shelf Life of Chicken Eggs During Storage. J. Sci. Food Agric. 2014, 94, 153–162. DOI: 10.1002/jsfa.6322.
  • Zhang, Z. Postharvest Chitosan-G-Salicylic Acid Application Alleviates Chilling Injury and Preserves Cucumber Fruit Quality During Cold Storage. Food Chem. 2015, 174, 558–563.
  • Shi, W.; Wang, W.; Liu, L.; Wu, S.; Wei, Y.; Li, W. Effect of Chitosan/nano-Silica Coating on the Physicochemical Characteristics of Longan Fruit Under Ambient Temperature. J. Food Eng. 2013, 118, 125–131.
  • Pradhan, G. S.; Dash, S.; Swain, S. Barrier Properties of Nano Silicon Carbide Designed Chitosan Nanocomposites. Carbohydr. Polym. 2017, 134, 60–65.
  • Hosseini, R.; Rezaei, M.; Zandi, M. Development of Bioactive Fish Gelatin/Chitosan Nanoparticles Composite Films with Antimicrobial Properties. Food Chem. 2016, 194, 1266–1274.
  • Kowalczyk, D.; Kordowska-Wiater, M.; Nowak, J.; Baraniak, B. Characterization of Films Based on Chitosan Lactate and Its Blends with Oxidized Starch and Gelatin. Int. J. Bio. Macromolecules. 2015, 77, 350–359. DOI: 10.1016/j.ijbiomac.2015.03.032.
  • Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food. Chem. 2018, 66, 395–413. DOI: 10.1021/acs.jafc.7b04528.
  • Giannakas A, A.; Valcha, M.; Salmas, C.; Leontiou, A.; Katapodis, P.; Stamatis, H. Preparation, Characterization, Mechanical, Barrier and Antimicrobial Properties of Chitosan/PVOH/Clay Nanocomposites. Carbohyd Tr. Polym. 2016, 140, 408–415.
  • Pal, A. K.; Katiyar, V. Nanoamphiphilic Chitosan Dispersed Poly(lactic Acid) Bionanocomposite Films with Improved Thermal, Mechanical, and Gas Barrier Properties. Biomacromol. 2016, 17, 2603–2618.
  • Bie P, L.; Liu, P.; Yu, L.; Li, X. The Properties of Antimicrobial Films Derived from Poly(lactic Acid)/Starch/Chitosan Blended Matrix. Carbohydr. Polym. 2013, 98, 959–966.
  • Richert, A.; Olewnik-Kruszkowska, E.; Dabrowska, G.; Dabrowski, H. The Role of Birch Tar in Changing the Physicochemical and Biocidal Properties of Polylactide-Based Films. Int. J. Mol. Sci. 2022, 23(268), 1–4.
  • Díez-Pascual, A. Biopolymer Composites: Synthesis, Properties, and Applications. Int. J.Mol. Sci. 2022, 23(2257), 1–4.
  • Zhang, R.; Lan, W.; Ji, T.; Sameen, D.; Ahmed, S.; Qin, W.; Liu, Y. Development of Polylactic Acid/ZnO Composite Membranes Prepared by Ultrasonication and Electrospinning for Food Packaging. LWT. 2021, 135(110072), 1–9.
  • Bikiaris, N.; Koumentakou, I.; Samiotaki, C.; Meimaroglou, D.; Varytimidou, D.; Karatza, A.; Kalantzis, Z.; Roussou, M.; Bikiaris, R.; Papageorgiou, G. Recent Advances in the Investigation of Poly(lactic Acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and Their Properties and Applications. Polymers. 2023, 5(1196), 1–63. DOI: 10.3390/polym15051196.
  • Feng, S.; Zhang, F.; Ahmed, S.; Liu, Y. Physico-Mechanical and Antibacterial Properties of PLA/TiO2 Composite Materials Synthesized via Electrospinning and Solution Casting Processes. Coatings. 2019, 9(525), 1–17.
  • Wang, Z.; Pan, Z.; Wang, J.; Zhao, R. A. Novel Hierarchical Structured Poly(lactic Acid)/Titania Fibrous Membrane with Excellent Antibacterial Activity and Air Filtration Performance. J. Nanomater. 2016, 26(39), 1–17.
  • Yetunde, A.; Akinnawo, S. O.; Ayesanmi, A. F. Contamination Levels of Organochlorine and Organophosphorus Pesticide Residues in Water and Sediment in River Owena, Nigeria. Current J. Appl. Sci. Technol. 2019, 34(2), 1–11.
  • Akinnawo, S. O.; Abiola, C.; Olanipekun, E. Seasonal Variation in the Physicochemical and Microbial Characterization of Sediment and Water Samples from Selected Areas in Ondo Coastal Region, Nigeria. J. Geog. Environ. Earth Sci. Int. 2016, 5(1), 1–12.
  • Akinnawo, S.; Kolawole, R.; Olanipekun, E. Spatial Distribution and Speciation of Heavy Metals in Sediment of River Ilaje, Nigeria. IJPAC. 2016, 10(2), 1–10.
  • Akinnawo, S. Determination of Organochlorine Pesticide Residues in Water and Sediment Samples from Selected Areas of River Ilaje, Nigeria. ACSJ. 2016, 11(2), 1–6. DOI: 10.9734/ACSJ/2016/22274.
  • Ajala, O.; Akinnawo, S. O.; Bamisaye, A.; Adedipe, D. T.; Adesina, M. O.; Okon-akan, O. A.; Adebusuyi, T. A.; Ojedokun, A. T.; Adegoke, K. A.; Bello, O. S. Adsorptive Removal of Antibiotic Pollutants from Wastewater Using Biomass/biochar-Based Adsorbents. Rsc. Adv. 2023, 13(7), 4678–4712. DOI: 10.1039/d2ra06436g.
  • Akinnawo, S. Eutrophication: Causes, Consequences, Physical, Chemical and Biological Techniques for Mitigation Strategies. Environ. Challenges. 2023, 12(100733), 1–18. DOI: 10.1016/j.envc.2023.100733.
  • Adegoke, K. A.; Akinnawo, S. O.; Ajala, O. A.; Adebusuyi, T. A.; Maxakato, N. W.; Bello, O. S. Progress and Challenges in Batch and Optimization Studies on the Adsorptive Removal of Heavy Metals Using Modified Biomass-Based Adsorbents. Bioresource Technol. Rep. 2022, 19(101115), 1–12.
  • Akinnawo, S. O.; Ayadi, P. O.; Oluwalope, M. T. Chemical Coagulation and Biological Techniques for Wastewater Treatment. Ovidius Univ. Annals Of Chem. 2023, 34(1), 14–21. DOI: 10.2478/auoc-2023-0003.
  • Akinnawo, S. O. Covalent Organic Frameworks (COFs): Design Strategies, Synthetic Methodologies, Characterization and Applications. ChmPhymat. 2023.
  • Adegoke, K. A.; Akinnawo, S. O.; Adebusuyi, T. A.; Ajala, O. A.; Adegoke, R. O.; Maxakoto, N. W.; Bello, O. S. Modified Biomass Adsorbents for Removal of Organic Pollutants: A Review of Batch and Optimization Studies. Int. J. Environ. Sci. Technol. 2023, 1–30. DOI: 10.1007/s13762-023-04872-2.
  • Li, L.; Lou, T.; Long, Y.; Cui, G.; Wang, X. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. Int. J. Biol. Macromol. 2018, 106, 768–774. DOI: 10.1016/j.ijbiomac.2017.08.072.
  • He, X.; Du, M.; Li, H.; Zhou, T. Removal of Direct Dyes from Aqueous Solution by Oxidized Starch Cross-Linked Chitosan/Silica Hybrid Membrane. Int. J. Biol. Macromol. 2016, 82, 174–181. DOI: 10.1016/j.ijbiomac.2015.11.005.
  • Zahedi S, S.; Ghomi, J. S.; Hossein, S. Preparation of Chitosan Nanoparticles from Shrimp Shells and Investigation of Its Catalytic Effect in Diastereoselective Synthesis of Dihydropyrroles. Ultrason Sonochem. 2018, 40, 260–264.
  • Habiba, U.; Afifi, A. M.; Salleh, A.; Ang, B. C. Chitosan/(Polyvinyl Alcohol)/Zeolite Electrospun Composite Nanofibrous Membrane for Adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 2017a, 322, 182–194.
  • Habiba U, U.; Saddique, T. A.; Talebian, S.; Lee, J. J.; Salleh, A.; Ang, B. C.; Afifi, A. M. Effect of Deacetylation on Property of Electrospun Chitosan/PVA Nanofibrous Membrane and Removal of Methyl Orange, Fe(iii) and Cr(vi) Ions. Carbohydr. Polym. 2017b, 177, 32–39. DOI: 10.1016/j.carbpol.2017.08.115.
  • Wen, Y.; Liang, Y.; Shen, C.; Wang, H.; Fu, D.; Wang, H. Synergistic Removal of Dyes by Myrothecium Verrucaria Immobilization on a Chitosan-Fe Membrane. R.S.C. Adv. 2015, 5, 68200–68208. DOI: 10.1039/c5ra11320b.
  • Bibi, S.; Yasin, T.; Hassan, S.; Riaz, M.; Nawaz, M. Chitosan/CNTs Green Nanocomposite Membrane: Synthesis, Swelling and Polyaromatic Hydrocarbons Removal. Mater. Sci. Eng. C. 2015, 46, 359–365.
  • Aliabadi, M.; Irani, M.; Ismaeili, J.; Najafzadeh, S. Design and Evaluation of Chitosan/Hydroxyapatite Composite Nanofiber Membrane for the Removal of Heavy Metal Ions from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2014, 45, 518–526.
  • Vieira, R. S.; Guibal, E.; Silva, E. A.; Beppu, M. M. Adsorption and Desorption of Binary Mixtures of Copper and Mercury Ions on Natural and Crosslinked Chitosan Membranes. Adsorption. 2007, 13, 603–611.
  • Tang, X.; Gan, L.; Duan, Y.; Sun, Y.; Zhang, Y.; Zhang, Z. A novel Cd2±imprinted chitosan-based composite membrane for Cd2+ removal from aqueous solution. Mater. Lett. 2017, 198, 121–123.
  • Wu, W.; Jia, Y., Porous CNTs/Chitosan Composite with Lamellar Structure Prepared by Icetemplating. In: Proceedings of SPIE-the international society for optical engineering, Melbourne, Victoria, Australia. pp. 8923, art no 89233A, 2013.
  • vantanpour, V.; Salehi, E.; Sahebjamee, N.; Ashrafi, M. Novel Chitosan/Poly(vinyl) Alcohol Thin Adsorptive Membranes Modified with Amino Functionalized Multi-Walled Carbon Nanotubes for Cu(ii) Removal from Water: Preparation, Characterization, Adsorption Kinetics and Thermodynamics. Sep. Purif. Technol. 2012, 89, 309–319.
  • Li, S.; Chen, G.; Qiang, S.; Yin, Z.; Zhang, Z.; Chen, Y. Synthesis and Evaluation of Highly Dispersible and Efficient Photocatalytic TiO2/Poly Lactic Acid Nanocomposite Films via Sol-Gel and Casting Processes. Int. J. Food Microbiol. 2020, 331(108763).
  • Gupta, N.; Kozlovskaya, V.; Dolmat, M.; Yancey, B.; Oh, J.; Lungu, C.; Kharlampieva, E. Photocatalytic Nanocomposite Microsponges of Polylactide-Titania for Chemical Remediation in Water. ACS Appl. Polym. Mater. 2020, 2, 5188–5197.
  • Ainali, N.; Kalaronis, D.; Evgenidou, E.; Bikiaris, D.; Lambropoulou, D. Insights into Biodegradable Polymer-Supported Titanium Dioxide Photocatalysts for Environmental Remediation. Macromol. 2021, 1, 201–233.
  • Bobirică, C.; Bobirică, L.; Râpă, M.; Matei, E.; Predescu, A.; Orbeci, C. Photocatalytic Degradation of Ampicillin Using PLA/TiO2 Hybrid Nanofibers Coated on Different Types of Fiberglass. Water. 2020, 12(176), 1–19.
  • Wang, J.; Lu, X.; Fai Ng, P.; Lee, K.; Fei, B.; Xin, J. H.; Wu, J. Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J. Colloid. Interface. Sci. 2015, 440, 32–38.
  • Lu, G. Characteristic and Mechanism of Cr(vi) Adsorption by Ammonium Sulfamate-Bacterial Cellulose in Aqueous Solutions. Chin. Chem. Lett. 2013, 24, 253–256.
  • Lu, M.; Zhang, Y.; Guan, X.; Xu, X. Thermodynamics and Kinetics of Adsorption For Heavy Metal Ions from Aqueous Solutions Onto Surface Amino-Bacterial Cellulose. Trans. Nonferrous Metals Soc. China. 2014, 24, 1912–1917.
  • Zhu, H.; Jia, S.; Wan, T.; Jia, Y.; Yang, H.; Li, J.; Yan, L.; Zhong, C. Biosynthesis of Spherical Fe3O4/Bacterial Cellulose Nanocomposites as Adsorbents for Heavy Metal Ions. Carbohydr. Polym. 2011, 86, 1558–1564.
  • Chen, S.; Zou, Y.; Yan, Z.; Shen, W.; Shi, S.; Zhang, X.; Wang, H. Carboxymethylated-bacterial cellulose for copper and lead ion removal. J. Hazard. Mater. 2009, 161, 1355–1359.
  • Zad, Z. R.; Davarani, S. S. H.; Taheri, A.; Bide, Y. A Yolk Shell Fe3O4@PA-Ni@pd/Chitosan Nanocomposite-Modified Carbon Ionic Liquid Electrode as a New Sensor for the Sensitive Determination of Fluconazole in Pharmaceutical Preparations and Biological Fluids. J. Mol. Liq. 2018, 253, 233–240. DOI: 10.1016/j.molliq.2018.01.01.
  • Mohammad-Rezaei, R.; Razmi, H. Preparation and Characterization of Hemoglobin Immobilized on Graphene Quantum Dots-Chitosan Nanocomposite as a Sensitive and Stable Hydrogen Peroxide Biosensor. Sens. Lett. 2016, 14, 685–691. DOI: 10.1166/sl.2016.3691.
  • Zhen-Zhen, A.; Zhuang, L.; Young-Yang, G.; Xiao-Ling, C.; Kang-Ning, Z.; Dong-Xia, Z.; Zhong-Hua, X.; Xi-Bin, Z.; Xiao-Quan, L. Preparation of Chitosan/n-Doped Graphene Natively Grown on Hierarchical Porous Carbon Nanocomposite as a Sensor Platform for Determination of Tartrazine. Chin. Chem. Lett. 2017, 28, 1492–1498. DOI: 10.1016/j.cclet.2017.02.014.
  • Zhong, W.; Chen, J.; Han, W.; Chen, J.; Wang, Y.; Wang, W.; Cheng, G.; Ou, L.; Yu, Y. Preparation of Chitosan/Amino Multiwalled Carbon Nanotubes Nanocomposite Beads for Bilirubin Adsorption in Hemoperfusion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 96–103. DOI: 10.1002/jbm.b.33806.
  • Roushani, M.; Zaedi, Z.; Hamdi, F.; Dizajdizi, B. Z. Preparation an Electrochemical Sensor For Detection of Manganese (II) Ions Using Glassy Carbon Electrode Modified with Multi Walled Carbon Nanotube-Chitosan-Ionic Liquid Nanocomposite Decorated with Ion Imprinted Polymer. J. Electroanal. Chem. 2017, 804, 1–6. DOI: 10.1016/j.jelechem.2017.09.038.
  • Babaei, A.; Babazadeh, M. Multi-Walled Carbon Nanotubes/Chitosan Polymer Composite Modified Glassy Carbon Electrode for Sensitive Simultaneous Determination of Levodopa and Morphine. Anal. Methods. 2011, 3, 2400–2405.
  • Muller, D.; Rambo, C. R.; Porto, L. M.; Barra, G. Chemical in situ Polymerization of Polypyrrole on Bacterial Cellulose Nanofibers. Synth. Met. 2011, 161, 106–111.
  • Mormino, R.; Bungay, H. Composites of Bacterial Cellulose and Paper Made with a Rotating Disk Bioreactor. Appl. Microbiol. Biotechnol. 2003, 62, 503–506.
  • Shah, J. Towards electronic paper displays made from microbial cellulose. Appl. Microbiol. Biotechnol. 2005, 66(4), 352–355.
  • Evans, B. R.; O”Niell, H. M.; Malyvanh, V. P.; Lee, I.; Woodward, J. Palladium-bacterial cellulose membranes for fuel cells. Biosens. Bioelectron. 2003, 18, 917–923.
  • Zhang, Z.; Zhang, J.; Zhao, X.; Yang, F. Core-Sheath Structured Porous Carbon Nanofiber Composite Anode Material Derived from Bacterial Cellulose/Polypyrrole as an Anode for Sodium-Ion Batteries. Carbon. 2015, 95, 552–559.
  • Zhang, F.; Tang, Y.; Yang, Y.; Zhang, X.; Lee, C. In-Situ Assembly of Three-Dimensional MoS2 Nanoleaves/Carbon Nanofiber Composites Derived from Bacterial Cellulose as Flexible and Binder-Free Anodes for Enhanced Lithium-Ion Batteries. Electrochim. Acta. 2016, 211, 404–410.
  • Gutierrez, J.; Tercjak, A.; Algar, I.; Retegi, A.; Mondragon, I. Conductive properties of TiO2/bacterial cellulose hybrid fibres. J. Colloid. Interface. Sci. 2012, 377(1), 88–93.
  • Kiziltas, K. Electrically Conductive Nano Graphite-Filled Bacterial Cellulose Composites. Carbohydr. Polym. 2016, 136, 1144–1151.
  • Hu, W. C.; Chen, S.; Yang, Z.; Lui, L.; Wang, H. Flexible Electrically Conductive Nanocomposite Membrane Based on Bacterial Cellulose and Polyaniline. J. Phys. Chem B. 2011, 8453–8845, 115.
  • Li, Z., Method for manufacture of bacterial cellulose hydrogel cold pack CN Patent No 201020239963.4, 2011.
  • Foresti, V. Applications of Bacterial Cellulose as Precursor of Carbon and Composites with Metal Oxide, Metal Sulfide and Metal Nanoparticles: A Review of Recent Advances. Carbohydr. Polym. 2017, 157, 447–467.
  • Kalinke, C.; Neumsteir, N.; Aparecido, G.; Ferraz, T.; Dos Santos, P.; Janegitz, B.; Bonacin, J. Comparison of Activation Processes for 3D Printed PLA-Graphene Electrodes: Electrochemical Properties and Application for Sensing of Dopamine. Analyst. 2020, 145, 1207–1218.
  • Chakraborty, G.; Pugazhenthi, G.; Katiyar, V. Exfoliated Graphene-Dispersed Poly (Lactic Acid)-Based Nanocomposite Sensors for Ethanol Detection. Polym. Bull. 2019, 76, 2367–2386.
  • Masarra, N.; Batistella, M.; Quantin, J.; Regazzi, A.; Pucci, M.; El Hage, R.; Lopez-Cuesta, J. Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique. Materials. 2022, 15(762), 1–27.
  • Silva, A.; Montagna, L.; Passador, F.; Rezende, M.; Lemes, A. Biodegradable Nanocomposites Based on PLA/PHBV Blend Reinforced with Carbon Nanotubes with Potential for Electrical and Electromagnetic Applications. Express Polym. Lett. 2021, 15, 987–1003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.