197
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advancements and applications in thermally conductive polymer nanocomposites

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1371-1420 | Received 24 Nov 2023, Accepted 11 Mar 2024, Published online: 29 Mar 2024

References

  • Zaheed, L.; Jachuck, R. J. J. Review of Polymer Compact Heat Exchangers, with Special Emphasis on a Polymer Film Unit. Appl. Therm. Eng. 2004, 24(16), 2323–2358. DOI: 10.1016/j.applthermaleng.2004.03.018.
  • Frick, A.; Rochman, A. Characterization of TPU-Elastomers by Thermal Analysis (DSC). Polym. Test. 2004, 23(4), 413–417. DOI: 10.1016/j.polymertesting.2003.09.013.
  • Arie, M. A.; Hymas, D. M.; Singer, F.; Shooshtari, A. H.; Ohadi, M. An Additively Manufactured Novel Polymer Composite Heat Exchanger for Dry Cooling Applications. Int. J. Heat Mass Transf. 2020, 147, 118889. DOI: 10.1016/j.ijheatmasstransfer.2019.118889.
  • El-Dessouky, H. T.; Ettouney, H. M. Plastic/Compact Heat Exchangers for Single-Effect Desalination Systems. Desalination. 1999, 122(2–3), 271–289. DOI: 10.1016/S0011-9164(99)00048-X.
  • Sabau, A. S.; Bejan, A.; Brownell, D.; Gluesenkamp, K.; Murphy, B.; List, F.; Carver, K.; Schaich, C. R.; Klett, J. W. Design, Additive Manufacturing, and Performance of Heat Exchanger with a Novel Flow-Path Architecture. Appl. Therm. Eng. 2020, 180(July), 115775. DOI: 10.1016/j.applthermaleng.2020.115775.
  • Kausar, A. Thermally Conducting Polymer/Nanocarbon and Polymer/Inorganic Nanoparticle Nanocomposite: A Review. Polym. Technol. Mater. 2020, 59(8), 895–909. DOI: 10.1080/25740881.2019.1708103.
  • Ouyang, Y.; Bai, L.; Tian, H.; Li, X.; Yuan, F. Recent Progress of Thermal Conductive Ploymer Composites: Al2O3 Fillers, Properties and Applications. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106685. DOI: 10.1016/j.compositesa.2021.106685.
  • Xu, Y.; Wang, X.; Hao, Q. A Mini Review on Thermally Conductive Polymers and Polymer-Based Composites. Compos. Commun. 2021, 24(December 2020), 100617. DOI: 10.1016/j.coco.2020.100617.
  • Chen, X.; Su, Y.; Reay, D.; Riffat, S. Recent Research Developments in Polymer Heat Exchangers - a Review. Renewable Sustainable Energy Rev. 2016, 60, 1367–1386. DOI: 10.1016/j.rser.2016.03.024.
  • Kumar, A.; Kumar, N. Advances in Transparent Polymer Nanocomposites and Their Applications: A Comprehensive Review. Polym. Technol. Mater. 2022, 61(9), 937–974. DOI: 10.1080/25740881.2022.2029892.
  • Hong, H.; Kim, J. U.; Il Kim, T. Effective Assembly of Nano-Ceramic Materials for High and Anisotropic Thermal Conductivity in a Polymer Composite. Polymers. 2017, 9(9), 413. DOI: 10.3390/polym9090413.
  • Lu, J.; Zhang, Y.; Gong, X.; Li, L.; Pang, S.; Qian, G.; Wang, Z.; Liu, J. High-Yield Synthesis of Ultrathin Silicon Nanosheets by Physical Grinding Enables Robust Lithium-Ion Storage. Chem. Eng. J. 2022, 446(2), 137022. DOI: 10.1016/j.cej.2022.137022.
  • Saravanan, S.; Abu-El Rub, E.; Ashour, H.; Ammar, H.; Sequiera, G.; Sareen, N.; Moudgil, M.; Dhingra, S. A Novel Chitosan-Graphene-Oxide-Gold-Nanoparticle Conductive Polymeric Scaffold Improves Ventricular Function After Implantation into Infarcted Heart. Can. J. Cardiol. 2017, 33(10), S170. DOI: 10.1016/j.cjca.2017.07.331.
  • Xie, J.; Lei, C.; Chen, W.; Huang, B. Conductive-Polymer-Supported Palladium-Iron Bimetallic Nanocatalyst for Simultaneous 4-Chlorophenol and Cr(vi) Removal: Enhanced Interfacial Electron Transfer and Mechanism. J. Hazard. Mater. 2022, 424(PD), 127748. DOI: 10.1016/j.jhazmat.2021.127748.
  • Akgul, F. A.; Akgul, G.; Kurban, M. Microstructural Properties and Local Atomic Structures of Cobalt Oxide Nanoparticles Synthesised by Mechanical Ball-Milling Process. Philos. Mag. 2016, 6435(October), 1–16. DOI: 10.1080/14786435.2016.1232493.
  • Semaltianos, N. G. Nanoparticles by Laser Ablation. Crit. Rev. Solid State Mater. Sci. 2010, 35(2), 105–124. DOI: 10.1080/10408431003788233.
  • Shah, P.; Gavrin, A. Synthesis of Nanoparticles Using High-Pressure Sputtering for Magnetic Domain Imaging. J. Magn. Magn. Mater. 2006, 301(1), 118–123. DOI: 10.1016/j.jmmm.2005.06.023.
  • Wan, F.; Lei, Y.; Wang, C.; Zhang, X.; He, H.; Jia, L.; Wang, T.; Chen, W. Highly Sensitive and Reproducible CNTs@Ag Modified Flower-Like Silver Nanoparticles for SERS Situ Detection of Transformer Oil-Dissolved Furfural. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2022, 273, 121067. DOI: 10.1016/j.saa.2022.121067.
  • Zhang, Y.; Wang, Q.; Ramachandran, C. S. Synthesis of Carbon Nanotube Reinforced Aluminum Composite Powder (CNT-Al) by Polymer Pyrolysis Chemical Vapor Deposition (PP-CVD) Coupled High Energy Ball Milling (HEBM) Process. Diam. Relat. Mater. 2020, 104(December 2019), 107748. DOI: 10.1016/j.diamond.2020.107748.
  • Ramesh, S.; Vetrivel, S.; Suresh, P.; Kaviarasan, V. Characterization Techniques for Nano Particles: A Practical Top Down Approach to Synthesize Copper Nano Particles from Copper Chips and Determination of Its Effect on Planes. Mater. Today Proc. 2020, 33, 2626–2630. DOI: 10.1016/j.matpr.2020.01.157.
  • Mahmoud, A. E. D.; Stolle, A.; Stelter, M. Sustainable Synthesis of High-Surface-Area Graphite Oxide via Dry Ball Milling. ACS Sustain. Chem. Eng. 2018, 6(5), 6358–6369. DOI: 10.1021/acssuschemeng.8b00147.
  • Xu, K.; Chen, X.; Zhou, H.; Bi, L.; Fu, S.; Li, W.; Liu, X.; Ma, F.; Zhang, K.; Liu, P., et al. Preparation and Formation Mechanism of CNTs/Cu-Al2O3 Composite Powders by in situ CVD Using Internally-Oxidized Cu-Al Alloy Powders. Mater. Lett. 2019, 254, 390–393. DOI: 10.1016/j.matlet.2019.07.018.
  • Ma, S.; Li, H.; Li, C.; Li, B.; Fei, J.; Wen, Y. Valuable Aramid/Cellulose Nanofibers Derived from Recycled Resources for Reinforcing Carbon Fiber/Phenolic Composites. Carbohydr. Polym. 2022, 292(March), 119712. DOI: 10.1016/j.carbpol.2022.119712.
  • Thongpool, V.; Phunpueok, A.; Piriyawong, V.; Limsuwan, S.; Limsuwan, P. Pulsed Laser Ablation of Graphite Target in Dimethyformamide. Energy Procedia. 2013, 34, 610–616. DOI: 10.1016/j.egypro.2013.06.792.
  • Lee, J.; Noh, S.; Pham, N. D.; Shim, J. H. Top-Down Synthesis of S-Doped Graphene Nanosheets by Electrochemical Exfoliation of Graphite: Metal-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions. Electrochim. Acta. 2019, 313, 1–9. DOI: 10.1016/j.electacta.2019.05.015.
  • Orofeo, C. M.; Ago, H.; Yoshihara, N.; Tsuji, M. Top-Down Approach to Align Single-Walled Carbon Nanotubes on Silicon Substrate Top-Down Approach to Align Single-Walled Carbon Nanotubes. Appl. Phys. Lett. 2009, 053113(5), 1–4. DOI: 10.1063/1.3078280.
  • Yong Cheng, M.-S. W.; Li, P.; Zhang, Q. Top-down fabrication of small carbon nanotubes. Nanoscale Horizons. 2019, 1(3), 3–12. DOI: 10.1039/C9NH00285E.
  • Parashar, M.; Shukla, V. K.; Singh, R. Metal Oxides Nanoparticles via Sol–Gel Method: A Review on Synthesis, Characterization and Applications. J. Mater. Sci.: Mater. Electron. 2020, 31(5), 3729–3749. DOI: 10.1007/s10854-020-02994-8.
  • Adachi, M.; Tsukui, S.; Okuyama, K. Nanoparticle Synthesis by Ionizing Source Gas in Chemical Vapor Deposition. Japanese J. Appl. Physics Part 2 Lett. 2003, 42(1 A/B), 4–7. DOI: 10.1143/jjap.42.l77.
  • Smith, N.; Raston, C. L.; Saunders, M.; Woodward, R. Synthesis of magnetic nanoparticles using spinning disc processing. 2006 NSTI Nanotechnol. Conf. Trade Show - NSTI Nanotech 2006 Tech. Proc. 2006, 1, 343–346.
  • Mueller, R.; Mädler, L.; Pratsinis, S. E. Nanoparticle Synthesis at High Production Rates by Flame Spray Pyrolysis. Chem. Eng. Sci. 2003, 58(10), 1969–1976. DOI: 10.1016/S0009-2509(03)00022-8.
  • Ntola, P.; Friedrich, H. B.; Mahomed, A. S.; Olivier, E. J.; Govender, A.; Singh, S. Exploring the Role of Fuel on the Microstructure of VOx/MgO Powders Prepared Using Solution Combustion Synthesis. Mater. Chem. Phys. 2022, 278(September 2021), 125602. DOI: 10.1016/j.matchemphys.2021.125602.
  • Pan, C.; Wei, Q.; Zhang, X.; Huang, Y.; Liu, D.; Tang, W.; Ouyang, T.; Liang, I.; Qun Tian, Z.; Kang Shen, P., et al. Bottom-Up Synthesis of Few-Layered Graphene Powders and Their Applications As Efficient Lubricating and Electromagnetic Shielding Additives. FlatChem. 2022, 33(March), 100375.
  • Aberefa, O.; Bedasie, K.; Madhi, S.; Daramola, M. O.; Iyuke, S. E. Production of Carbon Nanotube Yarn from Swirled Floating Catalyst Chemical Vapour Deposition: A Preliminary Study. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018, 9(3), 035009. DOI: 10.1088/2043-6254/aad5cb.
  • Ji, Z.; Lin, Q.; Huang, Z.; Chen, S.; Gong, P.; Sun, Z.; Shen, B. Enhanced Lubricity of CVD Diamond Films by in-Situ Synthetization of Top-Layered Graphene Sheets. Carbon. 2021, 184, 680–688. DOI: 10.1016/j.carbon.2021.08.077.
  • Ivanov, R.; Hussainova, I.; Aghayan, M.; Drozdova, M.; Pérez-Coll, D.; Rodríguez, M. A.; Rubio-Marcos, F. Graphene-Encapsulated Aluminium Oxide Nanofibers As a Novel Type of Nanofillers for Electroconductive Ceramics. J. Eur. Ceram. Soc. 2015, 35(14), 4017–4021. DOI: 10.1016/j.jeurceramsoc.2015.06.011.
  • Shargh, A. K.; Madejski, G. R.; McGrath, J. L.; Abdolrahim, N. Mechanical Properties and Deformation Mechanisms of Amorphous Nanoporous Silicon Nitride Membranes via Combined Atomistic Simulations and Experiments. Acta Mater. 2022, 222, 117451. DOI: 10.1016/j.actamat.2021.117451.
  • Islam, A.; Teo, S. H.; Awual, M. R.; Taufiq-Yap, Y. H. Improving the Hydrogen Production from Water Over MgO Promoted Ni–Si/CNTs Photocatalyst. J. Clean. Prod. 2019, 238, 117887. DOI: 10.1016/j.jclepro.2019.117887.
  • Bhattacharya, P.; Chattopadhyay, K. NANO Al2O3-Pb and SiO2-Pb Cermets by Sol-Gel Technique and the Phase Transformation Study of the Embedded Pb Particles. Nanostruct. Mater. 1999, 12(5), 1077–1080. DOI: 10.1016/S0965-9773(99)00302-5.
  • Khayatian, S. A.; Kompany, A.; Shahtahmassebi, N.; Khorsand Zak, A. Enhanced Photocatalytic Performance of Al-Doped ZnO NPs-Reduced Graphene Oxide Nanocomposite for Removing of Methyl Orange Dye from Water Under Visible-Light Irradiation. J. Inorg. Organomet. Polym. Mater. 2018, 28(6), 2677–2688. DOI: 10.1007/s10904-018-0940-6.
  • Balamurugan, S.; Ashna, L.; Parthiban, P. Synthesis of Nanocrystalline MgO Particles by Combustion Followed by Annealing Method Using Hexamine As a Fuel. J. Nanotechnol. 2014, 2014, 10–12. DOI: 10.1155/2014/841803.
  • Guo, Z.; Kim, T. Y.; Lei, K.; Pereira, T.; Sugar, J. G.; Hahn, H. T. Strengthening and Thermal Stabilization of Polyurethane Nanocomposites with Silicon Carbide Nanoparticles by a Surface-Initiated-Polymerization Approach. Compos. Sci. Technol. 2008, 68(1), 164–170. DOI: 10.1016/j.compscitech.2007.05.031.
  • Solar, A. H.; Pasteurizer, W. Design Optimization of Polymer Heat Exchanger for Automated Household-Scale Solar Water Pasteurizer. 2018, (i), 1–18. DOI: 10.3390/designs2020011.
  • Zhai, S.; Zhang, P.; Xian, Y.; Zeng, J.; Shi, B. Effective Thermal Conductivity of Polymer Composites: Theoretical Models and Simulation Models. Int. J. Heat Mass Transfer. 2018, 117, 358–374. DOI: 10.1016/j.ijheatmasstransfer.2017.09.067.
  • Xu, W.; Jambhulkar, S.; Zhu, Y.; Ravichandran, D.; Kakarla, M.; Vernon, B.; Lott, D. G.; Cornella, J. L.; Shefi, O.; Miquelard-Garnier, G., et al. 3D Printing for Polymer/particle-Based Processing: A Review. Compos. Part B Eng. 2021, 223(June), 109102.
  • Shirakawa, H.; Macdiarmid, A. J. H.; Alan, G.; Chiang, C. K.; Fincher Jr, C. B.; Park, Y. W. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39(17), 1098–1101. DOI: 10.1103/PhysRevLett.39.1098.
  • Singh, S.; Ramakrishna, S.; Berto, F. 3D Printing of Polymer Composites: A Short Review. Mater. Des. Process. Commun. 2020, 2(2), 1–13. DOI: 10.1002/mdp2.97.
  • Balandin, A. A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10(8), 569–581. DOI: 10.1038/nmat3064.
  • Idumah, C. I.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32(4), 413–457. DOI: 10.1515/revce-2016-0004.
  • Han, Z.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36(7), 914–944. DOI: 10.1016/j.progpolymsci.2010.11.004.
  • Li, S.; Zheng, Q.; Lv, Y.; Liu, X.; Wang, X.; Huang, P. Y.; Cahill, D. G.; Lv, B. High Thermal Conductivity in Cubic Boron Arsenide Crystals. Science (80-.). 2018, 361(6402), 579–581. DOI: 10.1126/science.aat8982.
  • Anwar, Z.; Kausar, A.; Muhammad, B. Polymer and Graphite-Derived Nanofiller Composite: An Overview of Functional Applications. Polym. - Plast. Technol. Eng. 2016, 55(16), 1765–1784. DOI: 10.1080/03602559.2016.1163598.
  • Sun, J.; Zhuang, J.; Jiang, H.; Huang, Y.; Zheng, X.; Liu, Y.; Wu, D. Thermal Dissipation Performance of Metal-Polymer Composite Heat Exchanger with V-Shape Microgrooves: A Numerical and Experimental Study. Appl. Therm. Eng. 2017, 121, 492–500. DOI: 10.1016/j.applthermaleng.2017.04.104.
  • Fu, L., et al. An Ultrathin High-Performance Heat Spreader Fabricated with Hydroxylated Boron Nitride Nanosheets. 2D Mater. 2017, 025047(4), 2–8.
  • L, X.; Zhou, T.; Wei, H.; Tan, H.; Wang, X.; Zeng, H. Strongly Anisotropic Thermal Conductivity and Adequate Breathability of Bilayered Films for Heat Management of On-Skin Electronics. 2D Mater. 2018, 1–29. DOI: 10.1088/2053-1583/aabc19.
  • Parsons, P.; Larimore, Z.; Muhammed, F.; Mirotznik, M. Fabrication of Low Dielectric Constant Composite Filaments for Use in Fused Filament Fabrication 3D Printing. Addit. Manuf. 2019, 30(June), 100888. DOI: 10.1016/j.addma.2019.100888.
  • Bletzinger, K. U.; Ramm, E. Structural Optimization and Form Finding of Light Weight Structures. Comput. Struct. 2001, 79(22–25), 2053–2062. DOI: 10.1016/S0045-7949(01)00052-9.
  • Alizadeh, S. A Feasibility Study of Using Solar Liquid-Desiccant Air Conditioner in Queensland, Australia. J. Sol. Energy Eng. 2016, 130(May 2008). DOI: 10.1115/1.2844426.
  • Elsayed, A.; Kim, Y. Estimation of Kinetic Constants in High-Density Polyethylene Bead Degradation Using Hydrolytic Enzymes. Environ. Pollut. 2022, 298(January), 118821. DOI: 10.1016/j.envpol.2022.118821.
  • Kim, J. D.; Ghil, L. J. Annealing Effect of Highly Sulfonated Polyphenylsulfone Polymer. Int. J. Hydrogen. Energy. 2016, 41(27), 11794–11800. DOI: 10.1016/j.ijhydene.2016.02.084.
  • Liu, X.; Gao, Y.; Shang, Y.; Zhu, X.; Jiang, Z.; Zhou, C.; Han, J.; Zhang, H. Non-Covalent Modification of Boron Nitride Nanoparticle-Reinforced PEEK Composite: Thermally Conductive, Interfacial, and Mechanical Properties. Polymer (Guildf.). 2020, 203(July), 122763. DOI: 10.1016/j.polymer.2020.122763.
  • Khan, W. S.; Asmatulu, R.; Rodriguez, V.; Ceylan, M. “Enhancing Thermal and Ionic Conductivities of Electrospun PAN and PMMA Nano Fi Bers by Graphene Nano Fl Ake Additions for Battery-Separator applications,” No. April. 2014, 38(15), 2044–2051. DOI: 10.1002/er.3188.
  • Si, W., et al. Enhancing Thermal Conductivity: Via Conductive Network Conversion from High to Low Thermal Dissipation in Polydimethylsiloxane Composites. J. Mater. Chem. C. 2020, 8(10), 3463–3475.
  • Park, J. Y.; Acar, M. H.; Akthakul, A.; Kuhlman, W.; Mayes, A. M. Polysulfone-Graft-Poly(ethylene Glycol) Graft Copolymers for Surface Modification of Polysulfone Membranes. Biomaterials. 2006, 27(6), 856–865. DOI: 10.1016/j.biomaterials.2005.07.010.
  • Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Progress in Polymer Science Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41–85. DOI: 10.1016/j.progpolymsci.2016.03.001.
  • Wang, S.; Liu, Y.; Guo, Y.; Lu, Y.; Huang, Y.; Xu, H.; Wu, D.; Sun, J. Optimal Analysis for Thermal Conductivity Variation of EVA/SCF Composites Prepared by Spatial Confining Forced Network Assembly. Mater. Today Commun. 2020, 25(April), 101206. DOI: 10.1016/j.mtcomm.2020.101206.
  • Goulas, A., et al. Synthesis and Dielectric Characterisation of a Low Loss BaSrtio3/ABS Ceramic/Polymer Composite for Fused Filament Fabrication Additive Manufacturing. Addit. Manuf. 2022, 55(April), 1–8.
  • Jia, Y.; Zhang, H.; Zhang, J. The Effect of Peroxide Cross-Linking on the Thermal Conductivity and Crystallinity of Low-Density Polyethylene. Mater. Today Commun. 2022, 31(May), 103735. DOI: 10.1016/j.mtcomm.2022.103735.
  • Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Polyphenylene Sulfide (PPS): State of the Art and Applications. Rev. Chem. Eng. 2013, 29(6), 471–489. DOI: 10.1515/revce-2012-0021.
  • Illers, K. H. Heat of Fusion and Specific Volume of Poly(ethylene Terephthalate) and Poly(butylene Terephthalate. Colloid Polym. Sci. Kolloid Zeitschrift Zeitschrift für Polym. 1980, 258(2), 117–124. DOI: 10.1007/BF01498267.
  • Agari, Y.; Tanaka, M.; Nagai, S.; Uno, T. Thermal Conductivity of a Polymer Composite Filled with Mixtures of Particles. J. Appl. Polym. Sci. 1987, 34(4), 1429–1437. DOI: 10.1002/app.1987.070340408.
  • Bernstein, R.; Derzon, D. K.; Gillen, K. T. Nylon 6. 6 Accelerated Aging Studies: Thermal E Oxidative Degradation and Its Interaction with Hydrolysis. Polym. Degrad. Stab. 2005, 88(3), 480–488. DOI: 10.1016/j.polymdegradstab.2004.11.020.
  • O, K.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Synthesis of Nylon 6-Clay Hybrid. J. Mater. Res. 1993, 8(5), 1179. DOI: 10.1557/JMR.1993.1179.
  • Bai, Y.; Zheng, K.; Cui, W.; Luo, J.; Zhou, H.; Wang, X.; Wen, B.; Xing, Q. Electromagnetic Shielding Performance of Acrylonitrile-Butadiene-styrene/CNTs Composite Foams with Different Cell Structures. J. Supercrit Fluids. 2022, 186(December 2021), 105608. DOI: 10.1016/j.supflu.2022.105608.
  • Tanaka, K.; Uchiyama, Y.; Toyooka, S. The Mechanism of Wear of Polytetrafluoroethylene. Wear. 1973, 23(2), 153–172. DOI: 10.1016/0043-1648(73)90081-1.
  • Fornes, T. D.; Paul, D. R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer (Guildf.). 2002, 43(11), 3247–3255. DOI: 10.1016/S0032-3861(02)00151-9.
  • Lule, Z.; Kim, J. Thermally Conductive and Highly Rigid Polylactic Acid (PLA) Hybrid Composite Fi Lled with Surface Treated Alumina/nano-Sized Aluminum Nitride. Compos. Part A. 2019, 124(July), 105506. DOI: 10.1016/j.compositesa.2019.105506.
  • Boyle, D.; Catarino, A. I.; Clark, N. J.; Henry, T. B. Polyvinyl Chloride (PVC) Plastic Fragments Release Pb Additives That Are Bioavailable in Zebra Fi Sh. Environ. Pollut. 2020, 263, 114422. DOI: 10.1016/j.envpol.2020.114422.
  • Teng, C.; Su, L.; Chen, J.; Wang, J. Flexible, Thermally Conductive Layered Composite Films from Massively Exfoliated Boron Nitride Nanosheets. Compos. Part A Appl. Sci. Manuf. 2019, 124(December 2018), 105498. DOI: 10.1016/j.compositesa.2019.105498.
  • Zhang, W.; Wang, H.; Tang, Z.; Lan, J.; Yu, Y.; Zhu, Y.; Yang, X. Mechanically Robust Epoxy Resin-Based Gel Polymer Electrolyte Stabilizing Ion Deposition for High-Performance Lithium Metal Batteries. Mater. Chem. Phys. 2022, 287(June), 126324. DOI: 10.1016/j.matchemphys.2022.126324.
  • Nikles, D. E.; Farahat, M. S. New Motivation for the Depolymerization Products Derived from Poly(ethylene Terephthalate) (PET) Waste: A Review. Macromol. Mater. Eng. 2005, 290(1), 13–30. DOI: 10.1002/mame.200400186.
  • Hashim, A. Recent Review on Poly-Methyl Methacrylate (PMMA)- Polystyrene (PS) Blend Doped with Nanoparticles for Modern Applications. Res. J. Agric. Biol. Sci. 2019, (December), 2–9. DOI: 10.22587/rjabs.2019.14.3.2.
  • Longo, C.; Savaris, M.; Zeni, M.; Brandalise, R. N.; Grisa, A. M. C. Degradation Study of Polypropylene (PP) and Bioriented Polypropylene (BOPP) in the Environment. Mater. Res. 2011, 14(4), 442–448. DOI: 10.1590/S1516-14392011005000080.
  • Ke, H.; Zhao, L.; Zhang, X.; Qiao, Y.; Wang, G.; Wang, X. Performance of High-Temperature Thermosetting Polyimide Composites Modified with Thermoplastic Polyimide. Polym. Test. 2020, 90(April), 106746. DOI: 10.1016/j.polymertesting.2020.106746.
  • King, J. A.; Tucker, K. W.; Vogt, B. D.; Weber, E. H.; Quan, C. Electrically and Thermally Conductive Nylon 6,6. Polym. Compos. 1999, 20(5), 643–654. DOI: 10.1002/pc.10387.
  • Singh, V.; Joung, D.; Zhai, L.; Das, S. Progress in Materials Science Graphene Based Materials: Past, Present and Future. Prog. Mater. Sci. 2011, 56(8), 1178–1271. DOI: 10.1016/j.pmatsci.2011.03.003.
  • Bjorneklett, A.; Halbo, L.; Kristiansen, H. Thermal Conductivity of Epoxy Adhesives Filled with Silver Particles. Int. J. Adhes. Adhes. 1992, 12(2), 99–104. DOI: 10.1016/0143-7496(92)90030-Y.
  • Yu, C.; Zhang, Q.; Zhang, J.; Geng, R.; Tian, W.; Fan, X.; Yao, Y. One-Step in situ Ball Milling Synthesis of Polymer-Functionalized Few-Layered Boron Nitride and Its Application in High Thermally Conductive Cellulose Composites. Acs Appl. Nano Mater. 2018, 1(9), 4875–4883. DOI: 10.1021/acsanm.8b01047.
  • Lipovka, A.; Petrov, I.; Fatkullin, M.; Murastov, G.; Ivanov, A.; Villa, N. E.; Shchadenko, S.; Averkiev, A.; Chernova, A.; Gubarev, F., et al. Photoinduced Flexible Graphene/Polymer Nanocomposites: Design, Formation Mechanism, and Properties Engineering. Carbon. 2022, 194, 154–161. DOI: 10.1016/j.carbon.2022.03.039.
  • Wypych, G. Physical Properties of Fillers and Filled Materials. Handb. Fill. 2016, 303–371. DOI: 10.1016/b978-1-895198-91-1.50007-5.
  • Bian, L.; Yang, J.; Cheng, Y. Molecular Structure Based Study on the Elastic Properties of Carbon Nanotubes in a Thermal Environment. J. Mol. Struct. 2022, 1262, 133013. DOI: 10.1016/j.molstruc.2022.133013.
  • Donnet, J. Carbon Black Science and Technology Second Edition, Revised; CRC Press: NEW YORK, 1993.
  • Rodgers, P., et al. Experimental Characterization of Thermally Enhanced Polymer Composite Heat Exchangers. Annu. IEEE Semicond. Therm. Meas. Manag. Symp 2015, 2015-April, 208–215. 10.1109/SEMI-THERM.2015.7100162.
  • Mittal, V. Polymer Layered Silicate Nanocomposites: A Review. Mater. (Basel). 2009, 2(3), 992–1057. DOI: 10.3390/ma2030992.
  • Ma, J., et al. Through-Plane Assembly of Carbon Fi Bers into 3D Skeleton Achieving Enhanced Thermal Conductivity of a Thermal Interface Material. Chem. Eng. J. 2020, 380July 2019: 122550. 10.1016/j.cej.2019.122550.
  • Vadivelu, M. A.; Kumar, C. R.; Joshi, G. M. Polymer Composites for Thermal Management: A Review. Compos. Interfaces. 2016, 23(9), 847–872. DOI: 10.1080/09276440.2016.1176853.
  • Melanitis, N.; Tetlow, P. L.; Galiotis, C. Characterization of PAN-Based Carbon Fibres with Laser Raman Spectroscopy. J. Mater. Sci. 1996, 31(4), 851–860. DOI: 10.1007/bf00352882.
  • Gao, Y.; Song, X.; Zhang, P. Comprehensive Evaluation and Analysis of a Porous Polymer Coating for Highly Efficient Passive Radiative Cooling. Sol. Energy Mater. Sol. Cells. 2023, 250(September 2022), 112081. DOI: 10.1016/j.solmat.2022.112081.
  • Said, Z.; Sundar, L. S.; Tiwari, A. K.; Ali, H. M.; Sheikholeslami, M.; Bellos, E.; Babar, H. Recent Advances on the Fundamental Physical Phenomena Behind Stability, Dynamic Motion, Thermophysical Properties, Heat Transport, Applications, and Challenges of Nanofluids. Phys. Rep. 2022, 946, 1–94. DOI: 10.1016/j.physrep.2021.07.002.
  • Glade, H.; Moses, D.; Orth, T. Polymer Composite Heat Exchangers; pringer International Publishing, 2018. DOI: 10.1007/978-3-319-71641-1_2.
  • Krupa, I.; Cecen, V.; Boudenne, A.; Prokeš, J.; Novák, I. The Mechanical and Adhesive Properties of Electrically and Thermally Conductive Polymeric Composites Based on High Density Polyethylene Filled with Nickel Powder. Mater. Des. 2013, 51, 620–628. DOI: 10.1016/j.matdes.2013.03.067.
  • Sui, G.; Liu, D.; Liu, Y.; Ji, W.; Zhang, Q.; Fu, Q. The Dispersion of CNT in TPU Matrix with Different Preparation Methods: Solution Mixing Vs Melt Mixing. Polymer (Guildf.). 2019, 182(September), 121838. DOI: 10.1016/j.polymer.2019.121838.
  • Harada, M.; Hamaura, N.; Ochi, M.; Agari, Y. Thermal Conductivity of Liquid Crystalline Epoxy/BN Filler Composites Having Ordered Network Structure. Compos. Part B Eng. 2013, 55, 306–313. DOI: 10.1016/j.compositesb.2013.06.031.
  • Akishin, G. P.; Turnaev, S. K.; Vaispapir, V. Y.; Gorbunova, M. A.; Makurin, Y. N.; Kiiko, V. S.; Ivanovskii, A. L. Thermal Conductivity of Beryllium Oxide Ceramic. Refract. Ind. Ceram. 2009, 50(6), 465–468. DOI: 10.1007/s11148-010-9239-z.
  • Balachander, N.; Seshadri, I.; Mehta, R. J.; Schadler, L. S.; Borca-Tasciuc, T.; York, N. Nanowire-Filled Polymer Composites with Ultrahigh Thermal Conductivity Nanowire-Filled Polymer Composites with Ultrahigh Thermal Conductivity. Appl. Phys. Lett. 2013, 093117(9). DOI: 10.1063/1.4793419.
  • Wang, S.; Cheng, Y.; Wang, R.; Sun, J.; Gao, L. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications As Thermal Interface Materials. ACS Appl. Mater. Interfaces. 2014, 6(9), 6481–6486. DOI: 10.1021/am500009p.
  • Kim, K.; Ju, H.; Kim, J. Vertical Particle Alignment of Boron Nitride and Silicon Carbide Binary Filler System for Thermal Conductivity Enhancement. Compos. Sci. Technol. 2016, 123, 99–105. DOI: 10.1016/j.compscitech.2015.12.004.
  • Bressanin, J. M.; Assis Júnior, V. A.; Bartoli, J. R. Electrically Conductive Nanocomposites of PMMA and Carbon Nanotubes Prepared by in situ Polymerization Under Probe Sonication. Chem. Pap. 2018, 72(7), 1799–1810. DOI: 10.1007/s11696-018-0443-5.
  • Casimir, D.; Ahmed, I.; Garcia-Sanchez, R.; Casimir, D.; Ahmed, I.; Garcia-Sanchez, R. Raman Spectroscopy Spectroscopy of Of Graphitic Graphitic Nanomaterials Nanomaterials Raman. Raman Spectrosc. 2018. DOI: 10.5772/intechopen.72769.
  • Yu, Y.; Wu, L.; Zhi, J. Diamond Nanowires: Fabrication, Structure, Properties, and Applications. Angew. Chem. Int. Ed. 2014, 53(52), 14326–14351. DOI: 10.1002/anie.201310803.
  • Gogotsi, Y. Nanotubes and Nanofibers; CRC Press, 2006. DOI: 10.1201/9781420009385.
  • Deisenroth, D. C.; Bar-Cohen, A. Review of Most Recent Progress on Development of Polymer Heat. Integr. Electron. Photonic Microsystems. 2016, 1–10.
  • Agari, Y.; Uno, T. Estimation on Thermal Conductivities of Filled Polymers. J. Appl. Polym. Sci. 1986, 32(7), 5705–5712. DOI: 10.1002/app.1986.070320702.
  • Yu, H.; Zhang, H.; Guo, B. Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity. Nano-Micro Lett. 2022, 14(1), 1–14. DOI: 10.1007/s40820-021-00751-y.
  • Ji, C.; Yan, C.; Wang, Y.; Xiong, S.; Zhou, F.; Li, Y.; Sun, R.; Wong, C.-P. Thermal Conductivity Enhancement of CNT/MoS2/graphene−epoxy Nanocomposites Based on Structural Synergistic Effects and Interpenetrating Network. Compos. Part B Eng. 2019, 163(October 2018), 363–370. DOI: 10.1016/j.compositesb.2018.11.005.
  • Noor, M.; Muhammad, W.; Azwadi, N.; Sidik, C.; Jazair, W. Heat and Mass Transfer Characteristics of Carbon Nanotube Nano Fluids: A Review. Renew. Sustain. Energy Rev. 2017, 80(February), 914–941. DOI: 10.1016/j.rser.2017.05.192.
  • Lee, J.-H.; Lee, S.-H.; Choi, C.; Jang, S.; Choi, S. A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids. Int J. Micro-Nano Scale Trans. 2010, 1(4), 269–322. DOI: 10.1260/1759-3093.1.4.269.
  • Yazid, M. N. A. W. M.; Sidik, N. A. C.; Yahya, W. J. Heat and Mass Transfer Characteristics of Carbon Nanotube Nanofluids: A Review. Renew. Sustain. Energy Rev. 2017, 80(February), 914–941. DOI: 10.1016/j.rser.2017.05.192.
  • Huang, X.; Jiang, P.; Tanaka, T. A Review of Dielectric Polymer Composites with High Thermal Conductivity. IEEE Electr. Insul. Mag. 2011, 27(4), 8–16. DOI: 10.1109/MEI.2011.5954064.
  • Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory. Prog. Polym. Sci. 2016, 61, 1–28. DOI: 10.1016/j.progpolymsci.2016.05.001.
  • Beardsmore, G. R.; Cull, J. P. Thermal Conductivity. Crustal Heat Flow. 2010, 90–145. DOI: 10.1017/cbo9780511606021.005.
  • Yu, S.; Hing, P.; Hu, X. Thermal conductivity of polystyrene-aluminum nitride composite. Compos. - Part A Appl. Sci. Manuf. 2002, 33(2), 289–292. DOI: 10.1016/S1359-835X(01)00107-5.
  • Sanada, K.; Tada, Y.; Shindo, Y. Thermal Conductivity of Polymer Composites with Close-Packed Structure of Nano and Micro Fillers. Compos. Part A Appl. Sci. Manuf. 2009, 40(6–7), 724–730. DOI: 10.1016/j.compositesa.2009.02.024.
  • Zhai, S.; Zhang, P.; Xian, Y.; Zeng, J.; Shi, B. Effective Thermal Conductivity of Polymer Composites: Theoretical Models and Simulation Models. Int. J. Heat Mass Transf. 2018, 117, 358–374. DOI: 10.1016/j.ijheatmasstransfer.2017.09.067.
  • Ma, H.; Ma, Y.; Tian, Z. Simple Theoretical Model for Thermal Conductivity of Crystalline Polymers. ACS Appl. Polym. Mater. 2019, 1(10), 2566–2570. DOI: 10.1021/acsapm.9b00605.
  • Wang, J.; Carson, J. K.; North, M. F.; Cleland, D. J. A New Structural Model of Effective Thermal Conductivity for Heterogeneous Materials with Co-Continuous Phases. Int. J. Heat Mass Transf. 2008, 51(9–10), 2389–2397. DOI: 10.1016/j.ijheatmasstransfer.2007.08.028.
  • Sun, M.; Yang, L.; Liu, K.; Gao, G.; Su, Z.; Gao, G.; Liu, B.; Wang, W.; Han, J.; Dai, B., et al. Enhancement in Thermal Conductivity of Polymer Composites Through Vertically Parallel Multilayered Distribution of Microdiamonds. Compos. Part A Appl. Sci. Manuf. 2019, 127(September), 105618.
  • Tan, J. F.; Jia, Y. J.; Li, L. X. A Series-Parallel Mixture Model to Predict the Overall Property of Particle Reinforced Composites. Compos. Struct. 2016, 150, 219–225. DOI: 10.1016/j.compstruct.2016.04.047.
  • Yu, Y.; Guo, F.; Xing, C.; Long, Y.; Hu, L.; Zhao, X.; Wang, Y. Thermal Properties of Hierarchical YSZ and LZO Ceramic Microspheres with Multi-Scaled Voids Investigated by Using Theoretical, Experimental and Simulation Methods. Adv. Powder Technol. 2022, 33(12), 103879. DOI: 10.1016/j.apt.2022.103879.
  • Nandi, A. K.; Deb, K.; Datta, S.; Orkas, J. Studies on Effective Thermal Conductivity of Particle-Reinforced Polymeric Flexible Mould Material Composites. Proc. Inst. Mech. Eng. Part L J Mater. Des. Appl. 2011, 225(3), 149–159. DOI: 10.1177/0954420711403568.
  • Cardoso, A. D. L.; de Argollo, R. M.; Costa, A. B. A Prediction Model of Thermal Conductivity of Rock Using Measurements in Biphasic Mixtures. Rev. Bras. Geofis. 2015, 33(1), 5–17. DOI: 10.22564/rbgf.v33i1.597.
  • Liang, J. Z. Estimation of Thermal Conductivity of PP/Al(oh)3/Mg(oh) 2 Composites. J. Polym. Eng. 2012, 32(6–7), 401–406. DOI: 10.1515/polyeng-2012-0027.
  • Wang, J.; Carson, J. K.; North, M. F.; Cleland, D. J. A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials. Int. J. Heat Mass Transf. 2006, 49(17–18), 3075–3083. DOI: 10.1016/j.ijheatmasstransfer.2006.02.007.
  • Levy, F. L. A Modified Maxwell-Eucken Equation for Calculating the Thermal Conductivity of Two-Component Solutions or Mixtures. Int. J. Refrig. 1981, 4(4), 223–225. DOI: 10.1016/0140-7007(81)90053-0.
  • Shrivastava, A.; Shukla, R.; Chaudhuri, P. Effect of Porosity on Thermal Conductivity of Li2TiO3 Ceramic Compact. Fusion Eng. Des. 2021, 166(February), 112318. DOI: 10.1016/j.fusengdes.2021.112318.
  • Kausar, A.; Anwar, S. Graphite Filler-Based Nanocomposites with Thermoplastic Polymers: A Review. Polym. - Plast. Technol. Eng. 2017, 2559(6), 565–580. DOI: 10.1080/03602559.2017.1329438.
  • Hassanzadeh-Aghdam, M. K.; Mahmoodi, M. J. Micromechanical Modeling of Thermal Conducting Behavior of General Carbon Nanotube-Polymer Nanocomposites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2018, 229(August 2017), 173–183. DOI: 10.1016/j.mseb.2017.12.039.
  • Hassanzadeh-Aghdam, M. K.; Ansari, R. Evaluating Unidirectional Composite Thermal Conductivities Through Engineered Interphase. Plast. Rubber Compos. 2019, 48(7), 317–326. DOI: 10.1080/14658011.2019.1622275.
  • Peuportier, B. Thermal and Environmental Assessment of a Passive Building Equipped with an Earth-To-Air Heat Exchanger in France. Sol. Energy. 2008, 82(9), 820–831. DOI: 10.1016/j.solener.2008.02.014.
  • Pang, C.; Won, J.; Tae, Y. International Journal of Thermal Sciences Review on Combined Heat and Mass Transfer Characteristics in Nano Fl Uids. Int. J. Therm. Sci. 2015, 87, 49–67. DOI: 10.1016/j.ijthermalsci.2014.07.017.
  • Yu, J.; Lu, K.; Sourty, E.; Grossiord, N.; Koning, C. E.; Loos, J. Characterization of Conductive Multiwall Carbon Nanotube/Polystyrene Composites Prepared by Latex Technology. Carbon. 2007, 45(15), 2897–2903. DOI: 10.1016/j.carbon.2007.10.005.
  • Mamunya, Y. P.; Davydenko, V. V.; Pissis, P.; Lebedev, E. V. Electrical and Thermal Conductivity of Polymers Filled.Pdf. Eur. Polym. J. 2002, 38(9), 1887–1897. DOI: 10.1016/S0014-3057(02)00064-2.
  • Kumar, N.; Jain, P. K.; Tandon, P.; Pandey, P. M. Additive Manufacturing of Flexible Electrically Conductive Polymer Composites via CNC-Assisted Fused Layer Modeling Process. J. Brazilian Soc. Mech. Sci. Eng. 2018, 40(4). DOI: 10.1007/s40430-018-1116-6.
  • Motaghi, A.; Hrymak, A.; Motlagh, G. H. Electrical Conductivity and Percolation Threshold of Hybrid Carbon/Polymer Composites. J. Appl. Polym. Sci. 2015, 132(13), 1–9. DOI: 10.1002/app.41744.
  • Su, F.; Miao, M. Effect of MWCNT Dimension on the Electrical Percolation and Mechanical Properties of Poly(vinylidenefluoride-Hexafluoropropylene) Based Nanocomposites. Synth. Met. 2014, 191, 99–103. DOI: 10.1016/j.synthmet.2014.02.023.
  • Vitiello, L.; Salzano de Luna, M.; Ambrogi, V.; Filippone, G. A Simple Rheological Method for the Experimental Assessment of the Fiber Percolation Threshold in Short Fiber Biocomposites. Compos. Sci. Technol. 2024, 245(November 2023), 110345. DOI: 10.1016/j.compscitech.2023.110345.
  • Du, C.; Cao, M.; Li, M.; Guo, H.; Liu, R.; Li, B. Homogeneously Dispersed Urchin-Structured Fe3O4 with Graphitic Carbon Spines Inside Poly(vinylidene Fluoride) for Efficient Thermal Conduction. Compos. Sci. Technol. 2020, 192(March), 108106. DOI: 10.1016/j.compscitech.2020.108106.
  • Wei, J.; Liao, M.; Ma, A.; Chen, Y.; Duan, Z.; Hou, X.; Li, M.; Jiang, N.; Yu, J. Enhanced Thermal Conductivity of Polydimethylsiloxane Composites with Carbon Fiber. Compos. Commun. 2020, 17(December 2019), 141–146. DOI: 10.1016/j.coco.2019.12.004.
  • Ã, A. R.; Dey, C. J.; Mills, D. R. Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review. Solar Energy Mater. Solar Cells. 2005, 86(4), 451–483. DOI: 10.1016/j.solmat.2004.09.003.
  • Almeida, S.; Tavares, M. I. B.; Oliveira da Silva, E.; Neto, R. P. C.; Moreira, L. A. Development of Hybrid Nanocomposites Based on PLLA and Low- Fi Eld NMR Characterization. Polym. Test. 2012, 31(2), 267–275. DOI: 10.1016/j.polymertesting.2011.11.005.
  • Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28(11), 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002.
  • Balogun, Y. A.; Buchanan, R. C. Enhanced Percolative Properties from Partial Solubility Dispersion of Filler Phase in Conducting Polymer Composites (CPCs). Compos. Sci. Technol. 2010, 70(6), 892–900. DOI: 10.1016/j.compscitech.2010.01.009.
  • Wycisk, R.; Poźniak, R.; Pasternak, A. Conductive Polymer Materials with Low Filler Content. J. Electrostat. 2002, 56(1), 55–66. DOI: 10.1016/S0304-3886(01)00204-2.
  • Ghislandi, M.; Tkalya, E.; Marinho, B.; Koning, C. E.; De with, G. Electrical Conductivities of Carbon Powder Nanofillers and Their Latex-Based Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2013, 53, 145–151. DOI: 10.1016/j.compositesa.2013.06.008.
  • Mamunya, Y. P.; Davydenko, V. V.; Pissis, P.; Lebedev, E. V. Electrical and Thermal Conductivity of Polymers Filled with Metal Powders. Eur. Polym. J. 2002, 38(9), 1887–1897. DOI: 10.1016/S0014-3057(02)00064-2.
  • Electrical, D.; Composites, C.; Gubbels, F.; Calderone, A. Selective Localization of Carbon Black in Immiscible Polymer Blends: A Useful Tool to Design Electrical Conductive Composites F. Macromolecules. 1994, 27(7), 1972–1974. DOI: 10.1021/ma00085a049.
  • Chem, J. M.; Shi, Y.-Y.; Yang, J.-H.; Zhang, N.; Huang, T.; Chen, C.; Wang, Y.; Zhou, Z.-W. COMMUNICATION a Simple Strategy to Achieve Very Low Percolation Threshold via the Selective Distribution of Carbon Nanotubes at the Interface of Polymer Blends. J. Mater. Chem. 2012, 22(42), 22398–22404. DOI: 10.1039/c2jm34295b.
  • Maiti, S.; Suin, S.; Shrivastava, N. K.; Khatua, B. B. A Strategy to Achieve High Electromagnetic Interference Shielding and Ultra Low Percolation in Multiwall Carbon Nanotube-Polycarbonate Composites Through Selective Localization of Carbon Nanotubes. R.S.C. Adv. 2014, 4(16), 7979–7990. DOI: 10.1039/c3ra46480f.
  • Poblete, V. H.; Rojas, P. A. Structural, Electrical and Percolation Threshold of Al/Polymethylmethacrylate Nanocomposites. Polym. Compos. 2010, 278–283. DOI: 10.1002/pc.
  • Wang, D.; Zhang, X.; Zha, J.; Zhao, J.; Dang, Z.; Hu, G. Dielectric Properties of Reduced Graphene Oxide/Polypropylene Composites with Ultralow Percolation Threshold. Polymer (Guildf.). 2013, 54(7), 1916–1922. DOI: 10.1016/j.polymer.2013.02.012.
  • Shrivastava, N. K.; Khatua, B. B. Development of Electrical Conductivity with Minimum Possible Percolation Threshold in Multi-Wall Carbon Nanotube/Polystyrene Composites. Carbon. 2011, 49(13), 4571–4579. DOI: 10.1016/j.carbon.2011.06.070.
  • Regev, B. O.; Elkati, P. N. B.; Loos, J.; Koning, C. E. Preparation of Conductive Nanotube–Polymer Composites Using Latex Technology. Adv. Mater. Mater. 2004, 16(3), 248–251. DOI: 10.1002/adma.200305728.
  • Mohan, L.; Kumar, P. N.; Karakkad, S.; Krishnan, S. T. Determination of Electrical Percolation Threshold of Carbon Nanotube-Based Epoxy Nanocomposites and Its Experimental Validation. IET Sci. Meas. Technol. 2019, 13(9), 1299–1304. DOI: 10.1049/iet-smt.2019.0011.
  • Wei, Z. B.; Zhao, Y.; Wang, C.; Kuga, S.; Huang, Y.; Wu, M. Antistatic PVC-Graphene Composite Through Plasticizer-Mediated Exfoliation of Graphite. Chinese J. Polym. Sci. (English Ed. 2018, 36(12), 1361–1367. DOI: 10.1007/s10118-018-2160-5.
  • Naeem, M.; Kuan, H.-C.; Michelmore, A.; Meng, Q.; Qiu, A.; Aakyiir, M.; Losic, D.; Zhu, S.; Ma, J. A New Method for Preparation of Functionalized Graphene and Its Epoxy Nanocomposites. Compos. Part B Eng. 2020, 196(April), 108096. DOI: 10.1016/j.compositesb.2020.108096.
  • Cruz-Aguilar, A.; Navarro-Rodríguez, D.; Pérez-Camacho, O.; Fernández-Tavizón, S.; Gallardo-Vega, C. A.; García-Zamora, M.; Barriga-Castro, E. D. High-Density Polyethylene/Graphene Oxide Nanocomposites Prepared via in situ Polymerization: Morphology, Thermal, and Electrical Properties. Mater. Today Commun. 2018, 16(June), 232–241. DOI: 10.1016/j.mtcomm.2018.06.003.
  • Chen, S.; Chen, L.; Liang, Y.; Zeng, X.; Fan, C. Preparation and Properties of Ceramic-Based Conductive Coatings. J. Adhes. Sci. Technol. 2021, 35(7), 777–790. DOI: 10.1080/01694243.2020.1826802.
  • Gamero-Quijano, A.; Huerta, F.; Salinas-Torres, D.; Morallón, E.; Montilla, F. Enhancement of the Electrochemical Performance of SWCNT Dispersed in a Silica Sol-Gel Matrix by Reactive Insertion of a Conducting Polymer. Electrochim. Acta. 2014, 135, 114–120. DOI: 10.1016/j.electacta.2014.04.172.
  • Abedi, S.; Abdouss, M. Applied Catalysis a: General a Review of Clay-Supported Ziegler – Natta Catalysts for Production of Polyolefin/Clay Nanocomposites Through in situ Polymerization. “Applied Catal. A, Gen. 2014, 475, 386–409. DOI: 10.1016/j.apcata.2014.01.028.
  • Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R Rep. 2000, 28(1), 1–63. DOI: 10.1016/S0927-796X(00)00012-7.
  • Hua, J.; Wang, Z.; Xu, L.; Wang, X.; Zhao, J.; Li, F. Preparation Polystyrene/Multiwalled Carbon Nanotubes Nanocomposites by Copolymerization of Styrene and Styryl-Functionalized Multiwalled Carbon Nanotubes. Mater. Chem. Phys. 2013, 137(3), 694–698. DOI: 10.1016/j.matchemphys.2012.10.020.
  • Amr, I. T.; Al-Amer, A.; P, S. T.; Al-Harthi, M.; Girei, S. A.; Sougrat, R.; Atieh, M. A. Effect of Acid Treated Carbon Nanotubes on Mechanical, Rheological and Thermal Properties of Polystyrene Nanocomposites. Compos. Part B Eng. 2011, 42(6), 1554–1561. DOI: 10.1016/j.compositesb.2011.04.013.
  • Ratnam, C. T.; Ramlee, N. A.; Appadu, S.; Manshor, S. M.; Ismail, H. Preparation and Electron Beam Irradiation of PVC/ENR/CNTs Nanocomposites. Polym. - Plast. Technol. Eng. 2015, 54(2), 184–191. DOI: 10.1080/03602559.2014.935421.
  • Bai, R.; Zhu, Z.; Zhong, Q. Preparation of Soft Magnetic FeNip/PP Nanocomposites by Multi-Step Dispersion Process. Polym. - Plast. Technol. Eng. 2018, 57(16), 1726–1732. DOI: 10.1080/03602559.2017.1422264.
  • Naz, A.; Sattar, R.; Siddiq, M. Preparation and Properties of High Performance Multilayered PANi/PMMA/PPG-B-PEG-B-PPG/fghmda Nanocomposites via in situ Polymerization. Polym. Technol. Mater. 2019, 58(3), 282–294. DOI: 10.1080/03602559.2018.1471710.
  • Ding, W.; Zhou, Y.; Wang, W.; Wang, J. The Reactive Compatibilization of Montmorillonite for Immiscible Anionic Polyamide 6/Polystyrene Blends via in situ Polymerization. Polym. Technol. Mater. 2020, 59(8), 884–894. DOI: 10.1080/25740881.2019.1708101.
  • Yu, H.; Ran, Q.; Wu, S.; Shen, J. Structure and Property of PU/MMT Nanocomposites by in-Situ Polymerization. Polym. - Plast. Technol. Eng. 2008, 47(6), 619–622. DOI: 10.1080/03602550802059758.
  • Wu, J.; Gu, D.; Li, J.; Jiang, H.; Zhang, Q.; Shen, L. Improvement of Electron Transport Properties of Polypyrrole Nano-Films by in-Situ Polymerization Under High Pressure. Polym. - Plast. Technol. Eng. 2014, 53(15), 1598–1606. DOI: 10.1080/03602559.2014.919642.
  • Nasrabadi, H. S.; Kalaee, M. R.; Mazinani, S.; Abdouss, M.; Sedaghat, N. Use of Carbon Nanotube to Enhance Thermal Resistance of Poly(ethylenetetrasulfide) via in situ Polymerization Method. Polym. - Plast. Technol. Eng. 2014, 53(8), 767–774. DOI: 10.1080/03602559.2014.886039.
  • Chimanowsky Junior, J. P.; Soares, I. L.; Luetkmeyer, L.; Tavares, M. I. B. Preparation of High-Impact Polystyrene Nanocomposites with Organoclay by Melt Intercalation and Characterization by Low-Field Nuclear Magnetic Resonance. Chem. Eng. Process. Process Intensif. 2014, 77, 66–76. DOI: 10.1016/j.cep.2013.11.012.
  • Fryń, P.; Bogdanowicz, K. A.; Krysiak, P.; Marzec, M.; Iwan, A.; Januszko, A. Dielectric, Thermal and Mechanical Properties of L,d-Poly(Lactic Acid) Modified by 4′-Pentyl-4-Biphenylcarbonitrile and Single Walled Carbon Nanotube. Polymers. 2019, 11(11), 1867. DOI: 10.3390/polym11111867.
  • Bora, C.; Dolui, S. K. Fabrication of Polypyrrole/Graphene Oxide Nanocomposites by Liquid/Liquid Interfacial Polymerization and Evaluation of Their Optical, Electrical and Electrochemical Properties. Polymer (Guildf.). 2012, 53(4), 923–932. DOI: 10.1016/j.polymer.2011.12.054.
  • Ma, J.; Hong, Y.; Sun, Y.; Peng, F. Fabrication of CeO2 Microspheres by sol−gel Reaction with Polymerization via Single Emulsion. Nucl. Anal. 2022, 1(1), 100008. DOI: 10.1016/j.nucana.2022.100008.
  • Benayache, W.; Tahar, M.; Ali, Z. Theoretical and Experimental Investigation of the Compatibilization Agent Contribution to the Interactions of Polymer Blend (PP/LDPE): Thermal, Morphological, and DFT Insights. J. Mol. Liq. 2024, 394(June 2023), 123745. DOI: 10.1016/j.molliq.2023.123745.
  • Dorigato, A.; Fredi, G. Advanced Industrial and Engineering Polymer Research Effect of Nano Fi Llers Addition on the Compatibilization of Polymer Blends. Adv. Ind. Eng. Polym. Res. 2023. DOI: 10.1016/j.aiepr.2023.09.004.
  • Charan, C. P.; Sengwa, R. J.; Saraswat, M. Synergistic Effect of Polymer Blend Compositions on the Structural, Thermal, Optical, and Broadband Dielectric Properties of P (VDF-HFP)/PEO/ZnO Polymer Nanocomposites. Chem. Phys. Impact. 2024, 8(December 2023), 100410. DOI: 10.1016/j.chphi.2023.100410.
  • Chang, J.; Zhang, Q.; Lin, Y.; Zhou, C.; Yang, W.; Yan, L.; Wu, G. Carbon Nanotubes Grown on Graphite Films As Effective Interface Enhancement for an Aluminum Matrix Laminated Composite in Thermal Management Applications. ACS Appl. Mater. Interfaces. 2018, 10(44), 38350–38358. DOI: 10.1021/acsami.8b12691.
  • Yin, K., et al. Construction of Iron-Polymer-Graphene Nanocomposites with Low Nonspeci Fi C Adsorption and Strong Quenching Ability for Competitive Immuno Fl Uorescent Detection of Biomarkers in GM Crops. Biosens. Bioelectron. 2017, 90September 2016: 321–328. 10.1016/j.bios.2016.11.070.
  • Sownthari, K.; Suthanthiraraj, S. A. Electrochimica Acta Preparation and properties of biodegradable polymer-layered silicate nanocomposite electrolytes for zinc based batteries. Electrochim. Acta. 2015, 174, 885–892. DOI: 10.1016/j.electacta.2015.06.049.
  • Lee, B.; Lin, Y.-C.; Hsu, W.-C.; Hou, C.-H.; Shyue, J.-J.; Hsiao, S.-Y.; Wu, P.-J.; Lee, Y.-T.; Luo, S.-C. Engineering Antifouling and Antibacterial Stainless Steel for Orthodontic Appliances Through Layer-By-Layer Deposition of Nanocomposite Coatings. ACS Appl. Bio. Mater. 2019, 3(1), 486–494. DOI: 10.1021/acsabm.9b00939.
  • Shahrokh, A.; Seyyed Fakhrabadi, M. M. Effects of Copper Nanoparticles on Elastic and Thermal Properties of Conductive Polymer Nanocomposites. Mech. Mater. 2021, 160(June), 103958. DOI: 10.1016/j.mechmat.2021.103958.
  • Nasar, G.; Azhar Khan, M.; Nadeem, Q.; Amin, H.; Ahmad, N.; Ur Rehman, J.; Khalil, U.; Saleem Khan, M. Silver-Polymer Nanocomposites: Structural, Thermal and Electromechanical Elucidation for Charge Storage Applications. Measurement. 2020, 156, 107615. DOI: 10.1016/j.measurement.2020.107615.
  • Hong, J.; Lee, J.; Hong, C. K.; Shim, S. E. Improvement of Thermal Conductivity of Poly(dimethyl Siloxane) Using Silica-Coated Multi-Walled Carbon Nanotube. J. Therm. Anal. Calorim. 2010, 101(1), 297–302. DOI: 10.1007/s10973-009-0664-5.
  • Hong, J.; Lee, J.; Kook, C. Improvement of Thermal Conductivity of Poly (Dimethyl Siloxane) Using Silica-Coated Multi-Walled Carbon Nanotube. J. Therm. Anal. Calorim. 2010, 101(1), 297–302. DOI: 10.1007/s10973-009-0664-5.
  • Xu, F.; Cui, Y.; Bao, D.; Lin, D.; Yuan, S.; Wang, X.; Wang, H.; Sun, Y. A 3D Interconnected Cu Network Supported by Carbon Felt Skeleton for Highly Thermally Conductive Epoxy Composites. Chem. Eng. J. 2020, 388(December 2019), 124287. DOI: 10.1016/j.cej.2020.124287.
  • Rusu, M.; Sofian, N.; Rusu, D. Mechanical and Thermal Properties of Zinc Powder Filled High Density Polyethylene Composites. Polym. Test. 2001, 20(4), 409–417. DOI: 10.1016/S0142-9418(00)00051-9.
  • Canh, M.; Bach, Q.; Duc, D.; Sang, T.; Goodarzi, M. 3D Interconnected Structure of Poly (Methyl Methacrylate) Microbeads Coated with Copper Nanoparticles for Highly Thermal Conductive Epoxy Composites. Compos.: Part B. 2019, 175(July), 107105. DOI: 10.1016/j.compositesb.2019.107105.
  • Ha, T.; Kim, D.; Ka, J.; Seok, Y.; Koh, W.; Sun, H. Simultaneous E Ff Ects of Silver-Decorated Graphite Nanoplatelets and Anisotropic Alignments on Improving Thermal Conductivity of Stretchable Poly (Vinyl Alcohol) Composite Films. Compos. Part A. 2020, 138(April), 106045. DOI: 10.1016/j.compositesa.2020.106045.
  • Yan, C.; Yu, T.; Ji, C.; Kang, D. J.; Wang, N.; Sun, R.; Wong, C.-P. Tailoring Highly Thermal Conductive Properties of Te/MoS2/Ag Heterostructure Nanocomposites Using a Bottom-Up Approach. Adv. Electron. Mater. 2019, 5(1), 1–8. DOI: 10.1002/aelm.201800548.
  • Guo, Y.; Yang, X.; Ruan, K.; Kong, J. Applications of Polymer, Composite, and Coating Materials Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites Key Laboratory of Materials Processi. J. Mater. Chem. C. 2019, 1–31. DOI: 10.1039/C9TC01804B.
  • Xue, Q. The Influence of Particle Shape and Size on Electric Conductivity of Metal-Polymer Composites. Eur. Polym. J. 2004, 40(2), 323–327. DOI: 10.1016/j.eurpolymj.2003.10.011.
  • Heris, H. R.; Kateb, M.; Erlingsson, S. I.; Manolescu, A. Effects of Transverse Geometry on the Thermal Conductivity of Si and Ge Nanowires. Surf. Interfaces. 2022, 30(November 2021), 101834. DOI: 10.1016/j.surfin.2022.101834.
  • Gao, Z.; Cai, S.; Min, D.; Hao, Y.; Ji, M.; Wu, Q.; Li, S.; Liu, W. Mesoscopic Conductivity and Trap Distribution Characteristics in the Interfacial Region of Polypropylene/MgO Nanocomposites with High Energy Storage Density. Surf. Interfaces. 2023, 44(December 2023), 103807. DOI: 10.1016/j.surfin.2023.103807.
  • Zang, J.; Li, H.; Sun, J.; Shen, Y.; Su, N.; Feng, X. Microstructure and Thermal Conductivity of Cu-Cu2AlNiZnAg/diamond Coatings on Pure Copper Substrate via High-Energy Mechanical Alloying Method. Surf. Interfaces. 2020, 21(October). DOI: 10.1016/j.surfin.2020.100742.
  • Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M. K. Journal of Physics and Chemistry of Solids Predicting Effective Electrical Resistivity and Conductivity of Carbon Nanotube/Carbon Black-Filled Polymer Matrix Hybrid Nanocomposites. J. Phys. Chem. Solids. 2022, 161(October 2021), 110444. DOI: 10.1016/j.jpcs.2021.110444.
  • Maghsoudlou, M. A.; Barbaz Isfahani, R.; Saber-Samandari, S.; Sadighi, M. Effect of Interphase, Curvature and Agglomeration of SWCNTs on Mechanical Properties of Polymer-Based Nanocomposites: Experimental and Numerical Investigations. Compos. Part B Eng. 2019, 175, 107119. DOI: 10.1016/j.compositesb.2019.107119.
  • Duc, B. N.; Son, Y. Enhanced Dispersion of Multi Walled Carbon Nanotubes by an Extensional Batch Mixer in Polymer/MWCNT Nanocomposites. Compos. Commun. 2020, 21(July), 100420. DOI: 10.1016/j.coco.2020.100420.
  • Thompson, S. M.; Talò, M.; Krause, B.; Janke, A.; Lanzerotti, M.; Capps, J.; Lanzara, G.; Lacarbonara, W. The Effect of Branched Carbon Nanotubes As Reinforcing Nano-Filler in Polymer Nanocomposites. Compos. Struct. 2022, 295(January), 115794. DOI: 10.1016/j.compstruct.2022.115794.
  • Pradere, C.; Sauder, C. Transverse and Longitudinal Coefficient of Thermal Expansion of Carbon Fibers at High Temperatures (300-2500 K). Carbon. 2008, 46(14), 1874–1884. DOI: 10.1016/j.carbon.2008.07.035.
  • Sobhani, E.; Masoodi, A. R. Natural Frequency Responses of Hybrid Polymer/Carbon Fiber/FG-GNP Nanocomposites Paraboloidal and Hyperboloidal Shells Based on Multiscale Approaches. Aerosp. Sci. Technol. 2021, 119, 107111. DOI: 10.1016/j.ast.2021.107111.
  • Guan, R.; Zou, F.; Li, D.; Liu, W.; Wu, C. Understanding the Sensitivity of Thin-Film Graphene/Polymer Nanocomposite Strain Sensors to Ultrasonic Waves: Analytical and Experimental Analysis. Compos. Sci. Technol. 2021, 216(September), 109079. DOI: 10.1016/j.compscitech.2021.109079.
  • Alizadeh, T.; Hamed, L. Elsevier B.V Graphene/Graphite/Molecularly Imprinted Polymer Nanocomposite As the Highly Selective Gas Sensor for Nitrobenzene Vapor Recognition. J. Environ. Chem. Eng. 2014, 2(3), 1514–1526. DOI: 10.1016/j.jece.2014.07.007.
  • Liu, Y.; Kumar, S. Polymer/Carbon Nanotube Nano Composite Fibers–A Review. Appl. Mater. Interfaces. 2014, 6(9), 6069–6087. DOI: 10.1021/am405136s.
  • Shaikh, S.; Li, L.; Lafdi, K.; Huie, J. Thermal Conductivity of an Aligned Carbon Nanotube Array. Carbon. 2007, 45(13), 2608–2613. DOI: 10.1016/j.carbon.2007.08.011.
  • Gong, F.; Bui, K.; Papavassiliou, D. V.; Duong, H. M. Thermal Transport Phenomena and Limitations in Heterogeneous Polymer Composites Containing Carbon Nanotubes and Inorganic Nanoparticles. Carbon. 2014, 78, 305–316. DOI: 10.1016/j.carbon.2014.07.007.
  • Pradhan, N. R.; Duan, H.; Liang, J.; Iannacchione, G. S. The Specific Heat and Effective Thermal Conductivity of Composites Containing Single-Wall and Multi-Wall Carbon Nanotubes. Nanotechnology. 2009, 20(24), 245705. DOI: 10.1088/0957-4484/20/24/245705.
  • Lee, J.; Stein, I. Y.; Devoe, M. E.; Lewis, D. J.; Lachman, N.; Kessler, S. S.; Buschhorn, S. T.; Wardle, B. L. Impact of Carbon Nanotube Length on Electron Transport in Aligned Carbon Nanotube Networks. Appl. Phys. Lett. 2015, 106(5), 1–6. DOI: 10.1063/1.4907608.
  • Ribeiro, B.; Botelho, E. C.; Costa, M. L.; Bandeira, C. F. Carbon Nanotube Bucky Paper Reinforced Polymer Composites: A Review. Polimeros. 2017, 27(3), 247–255. DOI: 10.1590/0104-1428.03916.
  • Marconnet, A. M.; Yamamoto, N.; Panzer, M. A.; Wardle, B. L.; Goodson, K. E. Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites with High Packing Density. ACS Nano. 2011, 5(6), 4818–4825. DOI: 10.1021/nn200847u.
  • Pak, S. Y.; Kim, H. M.; Kim, S. Y.; Youn, J. R. Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-Walled Carbon Nanotube Fillers. Carbon. 2012, 50(13), 4830–4838. DOI: 10.1016/j.carbon.2012.06.009.
  • Interface, M.; Moradi, S.; Calventus, Y.; Rom, F. Achieving High Thermal Conductivity in Epoxy Composites: E Ff Ect of Boron Nitride Particle Size and Matrix-Filler Interface. Polymers. 2019, 11(7), 2–17. DOI: 10.3390/polym11071156.
  • Guo, H.; Wang, Q.; Liu, J.; Du, C.; Li, B. Applied Surface Science Improved Interfacial Properties for Largely Enhanced Thermal Conductivity of Poly (Vinylidene Fl Uoride) -Based Nanocomposites via Functionalized Multi- Wall Carbon Nanotubes. Appl. Surf. Sci. 2019, 487(May), 379–388. DOI: 10.1016/j.apsusc.2019.05.070.
  • Ji, C.; Yan, C.; Wang, Y.; Xiong, S.; Zhou, F.; Li, Y.; Sun, R.; Wong, C.-P. Thermal Conductivity Enhancement of CNT/MoS 2/Graphene − Epoxy Nanocomposites Based on Structural Synergistic E Ff Ects and Interpenetrating Network. Compos.: Part B. 2019, 163(September 2018), 363–370. DOI: 10.1016/j.compositesb.2018.11.005.
  • Wang, Z.; Yang, Y.-L.; Zheng, Z.-L.; Lan, R.-T.; Dai, K.; Xu, L.; Huang, H.-D.; Tang, J.-H.; Xu, J.-Z.; Li, Z.-M., et al. Achieving Excellent Thermally Conductive and Electromagnetic Shielding Performance by Nondestructive Functionalization and Oriented Arrangement of Carbon Nanotubes in Composite Films. Compos. Sci. Technol. 2020, 194(April), 108190.
  • Zhang, F.; Fan, K.; Saba, F.; Yu, J. Graphene Reinforced-Graphitized Nanodiamonds Matrix Composites: Fabrication, Microstructure, Mechanical Properties, Thermal and Electrical Conductivity. Carbon. 2020, 169, 416–428. DOI: 10.1016/j.carbon.2020.08.011.
  • Ha, S. M.; Lee, H. L.; Lee, S.-G.; Kim, B. G.; Kim, Y. S.; Won, J. C.; Choi, W. J.; Lee, D. C.; Kim, J.; Yoo, Y., et al. Thermal Conductivity of Graphite Filled Liquid Crystal Polymer Composites and Theoretical Predictions. Compos. Sci. Technol. 2013, 88, 113–119. DOI: 10.1016/j.compscitech.2013.08.022.
  • Yang, B.; Pan, Y.; Yu, Y.; Wu, J.; Xia, R.; Wang, S.; Wang, Y.; Su, L.; Miao, J.; Qian, J., et al. Filler Network Structure in Graphene Nanoplatelet (GNP)-Filled Polymethyl Methacrylate (PMMA) Composites: From Thermorheology to Electrically and Thermally Conductive Properties. Polym. Test. 2020, 89(April), 106575.
  • Chen, W.; Wu, K.; Liu, Q.; Lu, M. Functionalization of Graphite via Diels-Alder Reaction to Fabricate Poly (Vinyl Alcohol) Composite with Enhanced Thermal Conductivity. Polymer (Guildf.). 2020, 186(December 2019), 122075. DOI: 10.1016/j.polymer.2019.122075.
  • Zhang, Y.; Choi, J. R.; Park, S. J. Interlayer Polymerization in Amine-Terminated Macromolecular Chain-Grafted Expanded Graphite for Fabricating Highly Thermal Conductive and Physically Strong Thermoset Composites for Thermal Management Applications. Compos. Part A Appl. Sci. Manuf. 2018, 109(January), 498–506. DOI: 10.1016/j.compositesa.2018.04.001.
  • Li, C.; Tan, L.-Y.; Zeng, X.-L.; Zhu, D.-L.; Sun, R.; Xu, J.-B.; Wong, C.-P. Polymer Composites with High Thermal Conductivity Optimized by Polyline-Folded Graphite Paper. Compos. Sci. Technol. 2020, 188, 107970. DOI: 10.1016/j.compscitech.2019.107970.
  • Chen, J.; Gao, X.; Song, W. Effect of Various Carbon Nanofillers and Different Filler Aspect Ratios on the Thermal Conductivity of Epoxy Matrix Nanocomposites. Results. Phys. 2019, 15(October). DOI: 10.1016/j.rinp.2019.102771.
  • Zhuang, Y. F.; Cao, X. Y.; Zhang, J. N.; Ma, Y. Y.; Shang, X. X.; Lu, J. X.; Yang, S. L.; Zheng, K.; Ma, Y. M. Monomer Casting Nylon/Graphene Nanocomposite with Both Improved Thermal Conductivity and Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2019, 120(December 2018), 49–55. DOI: 10.1016/j.compositesa.2019.02.019.
  • Tong, J.; Huang, H.; Wu, M. Simultaneously Facilitating Dispersion and Thermal Reduction of Graphene Oxide to Enhance Thermal Conductivity of Poly (Vinylidene Fluoride)/Graphene Nanocomposites by Water in Continuous Extrusion. Chem. Eng. J. 2018, 348, 693–703. DOI: 10.1016/j.cej.2018.04.199.
  • Wang, R.; Wu, L.; Zhuo, D.; Zhang, J.; Zheng, Y. Fabrication of Polyamide 6 Nanocomposite with Improved Thermal Conductivity and Mechanical Properties via Incorporation of Low Graphene Content. Ind. Eng. Chem. Res. 2018, 57(32), 10967–10976. DOI: 10.1021/acs.iecr.8b01070.
  • Kim, G. H.; Lee, D.; Shanker, A.; Shao, L.; Kwon, M. S.; Gidley, D.; Kim, J.; Pipe, K. P. High Thermal Conductivity in Amorphous Polymer Blends by Engineered Interchain Interactions. Nat. Mater. 2015, 14(3), 295–300. DOI: 10.1038/nmat4141.
  • Araby, S.; Meng, Q.; Zhang, L.; Kang, H.; Majewski, P.; Tang, Y.; Ma, J. Electrically and Thermally Conductive Elastomer/Graphene Nanocomposites by Solution Mixing. Polymer (Guildf.). 2014, 55(1), 201–210. DOI: 10.1016/j.polymer.2013.11.032.
  • He, X.; Huang, Y.; Liu, Y.; Zheng, X.; Kormakov, S.; Sun, J.; Zhuang, J.; Gao, X.; Wu, D. Improved Thermal Conductivity of Polydimethylsiloxane/Short Carbon Fiber Composites Prepared by Spatial Confining Forced Network Assembly. J. Mater. Sci. 2018, 53(20), 14299–14310. DOI: 10.1007/s10853-018-2618-4.
  • Li, A.; Zhang, C.; Zhang, Y. F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers. 2017, 9(9), 437. DOI: 10.3390/polym9090437.
  • Zhao, Y.; Zhang, Y.; Bai, S.; Yuan, X. Carbon Fi Bre/Graphene Foam/Polymer Composites with Enhanced Mechanical and Thermal Properties. Compos.: Part B. 2016, 94, 102–108. DOI: 10.1016/j.compositesb.2016.03.056.
  • Ji, J.; Chiang, S.-W.; Liu, M.; Liang, X.; Li, J.; Gan, L.; He, Y.; Li, B.; Kang, F.; Du, H., et al. Enhanced Thermal Conductivity of Alumina and Carbon Fibre Filled Composites by 3-D Printing. Thermochim. Acta. 2020, 690(April), 178649.
  • Guo, L.; Zhang, Z.; Li, M.; Kang, R.; Chen, Y.; Song, G.; Han, S.-T.; Lin, C.-T.; Jiang, N.; Yu, J., et al. Extremely High Thermal Conductivity of Carbon Fiber/Epoxy with Synergistic Effect of MXenes by Freeze-Drying. Compos. Commun. 2020, 19(March), 134–141.
  • Chandrashekar, A.; Hegde, M.; Krishna, S.; Ayippadath Gopi, J.; Kotresh, T. M.; Prabhu, T. N. Non-Covalent Surface Functionalization of Nanofillers Towards the Enhancement of Thermal Conductivity of Polymer Nanocomposites: A Mini Review. Eur. Polym. J. 2023, 198(July), 112379. DOI: 10.1016/j.eurpolymj.2023.112379.
  • Khan, A.; Puttegowda, M.; Jagadeesh, P.; Marwani, H. M.; Asiri, A. M.; Manikandan, A.; Parwaz Khan, A. A.; Ashraf, G. M.; Rangappa, S. M.; Siengchin, S., et al. Review on Nitride Compounds and Its Polymer Composites: A Multifunctional Material. J. Mater. Res. Technol. 2022, 18, 2175–2193. DOI: 10.1016/j.jmrt.2022.03.032.
  • Bao, X.; Edirisinghe, M. Novel Polymeric Precursor Routes for the Preparation of Silicon Carbide – Silicon Nitride Composites. Mater. Technol. 2016, 15(2), 137–142. DOI: 10.1080/10667857.2000.11752869.
  • Hu, M.; Feng, J.; Ng, K. M. Thermally Conductive PP/AlN Composites with a 3-D Segregated Structure. Compos. Sci. Technol. 2015, 110, 26–34. DOI: 10.1016/j.compscitech.2015.01.019.
  • Yuan, Z. H.; Sun, S. Q.; Duan, Y. Q.; Wang, D. J. Fabrication of Densely Packed AlN Nanowires by a Chemical Conversion of Al2O3 Nanowires Based on Porous Anodic Alumina Film. Nanoscale Res. Lett. 2009, 4(10), 1126–1129. DOI: 10.1007/s11671-009-9368-9.
  • Xia, Z. P.; Li, Z. Q. Structural Evolution of Hexagonal BN and Cubic BN During Ball Milling. J. Alloys Compd. 2007, 436(1–2), 170–173. DOI: 10.1016/j.jallcom.2006.06.100.
  • Sobhani, M.; Ebadzadeh, T.; Rahimipour, M. R. Formation and Densification Behavior of Reaction Sintered Alumina-20 Wt.% Aluminium Titanate Nano-Composites. Int. J. Refract. Met. Hard Mater. 2014, 47, 49–53. DOI: 10.1016/j.ijrmhm.2014.06.018.
  • Suchanek, W. L.; Garcés, J. M. Hydrothermal Synthesis of Novel Alpha Alumina Nano-Materials with Controlled Morphologies and High Thermal Stabilities. CrystEngcomm. 2010, 12(10), 2996–3002. DOI: 10.1039/b927192a.
  • Zhou, T.; Wang, X.; Mingyuan, G. U.; Liu, X. Study of the Thermal Conduction Mechanism of Nano-SiC/dgeba/EMI-2,4 Composites. Polymer (Guildf.). 2008, 49(21), 4666–4672. DOI: 10.1016/j.polymer.2008.08.023.
  • Li, S.; Zhang, Y.; Han, J.; Zhou, Y. Fabrication and Characterization of SiC Whisker Reinforced Reaction Bonded SiC Composite. Ceram. Int. 2013, 39(1), 449–455. DOI: 10.1016/j.ceramint.2012.06.047.
  • He, H.; Fu, R.; Shen, Y.; Han, Y.; Song, X. Preparation and Properties of Si3N4/PS Composites Used for Electronic Packaging. Compos. Sci. Technol. 2007, 67(11–12), 2493–2499. DOI: 10.1016/j.compscitech.2006.12.014.
  • Kusunose, T.; Yagi, T.; Firoz, S. H.; Sekino, T. Fabrication of Epoxy/Silicon Nitride Nanowire Composites and Evaluation of Their Thermal Conductivity. J. Mater. Chem. A. 2013, 1(10), 3440–3445. DOI: 10.1039/c3ta00686g.
  • Chen, J.; Huang, X.; Zhu, Y.; Jiang, P. Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability. Adv. Funct. Mater. 2017, 27(5), 1–9. DOI: 10.1002/adfm.201604754.
  • Huang, X.; Zhi, C.; Jiang, P.; Golberg, D.; Bando, Y. Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Adv. Funct. Mater. 2012, 23(14), 1–8. DOI: 10.1002/adfm.201201824.
  • Yu, S.; Hing, P.; Hu, X. Thermal Conductivity of Polystyrene–Aluminum Nitride Composite. Composites Part A: Applied Science And Manufacturing. 2002, 33(2), 289–292. DOI: 10.1016/S1359-835X(01)00107-5.
  • Xu, Y.; Chung, D. D. L.; Mroz, C. Thermally Conducting Aluminum Nitride Polymer-Matrix Composites. Compos. - Part A Appl. Sci. Manuf. 2001, 32(12), 1749–1757. DOI: 10.1016/S1359-835X(01)00023-9.
  • Li, M.; Wang, M.; Hou, X.; Zhan, Z.; Wang, H.; Fu, H.; Lin, C.-T.; Fu, L.; Jiang, N.; Yu, J. Highly Thermal Conductive and Electrical Insulating Polymer Composites with Boron Nitride. Composites Part B: Engineering. 2020, 184(December 2019), 107746. DOI: 10.1016/j.compositesb.2020.107746.
  • Huang, T.; Li, Y.; Chen, M.; Wu, L. Bi-Directional High Thermal Conductive Epoxy Composites with Radially Aligned Boron Nitride Nanosheets Lamellae. Compos. Sci. Technol. 2020, 198(April), 108322. DOI: 10.1016/j.compscitech.2020.108322.
  • Nanocomposite, B. S.; Lule, Z.; Kim, J. Surface modification of aluminum nitride to fabricate thermally conductive poly (Butylene Succinate) nanocomposite. Polymers. 2019, 11(1), 148. DOI: 10.3390/polym11010148.
  • Zhang, X.; Tan, C.; Ma, Y.; Wang, F.; Yang, W. BaTio3@carbon/Silicon Carbide/Poly(vinylidene Fluoride-Hexafluoropropylene) Three-Component Nanocomposites with High Dielectric Constant and High Thermal Conductivity. Compos. Sci. Technol. 2018, 162, 180–187. DOI: 10.1016/j.compscitech.2018.05.001.
  • Yuan, Y.; Li, Z.; Cao, L.; Tang, B.; Zhang, S. Modification of Si3N4 Ceramic Powders and Fabrication of Si3 N4/PTFE Composite Substrate with High Thermal Conductivity. Ceram. Int. 2019, 45(13), 16569–16576. DOI: 10.1016/j.ceramint.2019.05.194.
  • Yu, J. H.; Cennini, G. Improving Thermal Conductivity of Polymer Composites in Embedded LEDs Systems. Microelectronics J. 2015, 45(12), 1829–1833. DOI: 10.1016/j.mejo.2014.01.017.
  • Liu, X.; Ai, Q.; Xu, J.; Shuai, Y. Improving Inherent Thermal Conductivity of Epoxy Resins Based on Contribution Components of Thermal Conductivity: A Molecular Dynamics Study. Eur. Polym. J. 2023, 198(March), 112407. DOI: 10.1016/j.eurpolymj.2023.112407.
  • Zhang, H.; Zhang, X.; Fang, Z.; Huang, Y.; Xu, H.; Liu, Y.; Wu, D.; Zhuang, J.; Sun, J. Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review. J. Compos. Sci. 2020, 4(4), 180. DOI: 10.3390/jcs4040180.
  • Liu, M.; Chiang, S.-W.; Chu, X.; Li, J.; Gan, L.; He, Y.; Li, B.; Kang, F.; Du, H. Polymer Composites with Enhanced Thermal Conductivity via Oriented Boron Nitride and Alumina Hybrid Fillers Assisted by 3-D Printing. Ceram. Int. 2020, 46(13), 20810–20818. DOI: 10.1016/j.ceramint.2020.05.096.
  • Yao, Y.; Xu, Y.; Wang, B.; Yin, W.; Lu, H. Recent Development in Electrospun Polymer Fiber and Their Composites with Shape Memory Property: A Review. Pigment Resin Technol. 2018, 47(1), 47–54. DOI: 10.1108/PRT-04-2017-0039.
  • Al Hallaj, S.; Selman, J. R. A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material. J. Electrochem. Soc. 2000, 147(9), 3231. DOI: 10.1149/1.1393888.
  • Foster, C. W.; Down, M. P.; Zhang, Y.; Ji, X.; Rowley-Neale, S. J.; Smith, G. C.; Kelly, P. J.; Banks, C. E. 3D Printed Graphene Based Energy Storage Devices. Sci. Rep. 2017, 7(1), 1–11. DOI: 10.1038/srep42233.
  • Foster, C. W.; Zou, G.; Jiang, Y.; Down, M. P.; Liauw, C. M.; Garcia‐Miranda ferrari, A.; Ji, X.; Smith, G. C.; Kelly, P. J.; Banks, C. E. Next-Generation Additive Manufacturing: Tailorable Graphene/Polylactic (Acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries. Batter Supercaps. 2019, 2(5), 399–400. DOI: 10.1002/batt.201900058.
  • Maurel, A.; Grugeon, S.; Fleutot, B.; Courty, M.; Prashantha, K.; Tortajada, H.; Armand, M.; Panier, S.; Dupont, L. Three-Dimensional Printing of a LiFePO 4/Graphite Battery Cell via Fused Deposition Modeling. Sci. Rep. 2019, 9(1), 1–14. DOI: 10.1038/s41598-019-54518-y.
  • Maqbool, M.; Aftab, W.; Bashir, A.; Usman, A.; Guo, H.; Bai, S. Engineering of Polymer-Based Materials for Thermal Management Solutions. Compos. Commun. 2022, 29(December 2021), 101048. DOI: 10.1016/j.coco.2021.101048.
  • Hinze, M.; Ranft, F.; Drummer, D.; Schwieger, W. Reduction of the Heat Capacity in Low-Temperature Adsorption Chillers Using Thermally Conductive Polymers As Heat Exchangers Material. Energy Convers. Manag. 2017, 145, 378–385. DOI: 10.1016/j.enconman.2017.05.011.
  • Mei, H.; Yin, X.; Zhang, J.; Zhao, W. Compressive Properties of 3D Printed Polylactic Acid Matrix Composites Reinforced by Short Fibers and SiC Nanowires. Adv. Eng. Mater. 2019, 21(5). DOI: 10.1002/adem.201800539.
  • Foster, C. W.; Zou, G.-Q.; Jiang, Y.; Down, M. P.; Liauw, C. M.; Garcia‐Miranda ferrari, A.; Ji, X.; Smith, G. C.; Kelly, P. J.; Banks, C. E. Next-Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries. Batter Supercaps. 2019, 2(5), 448–453. DOI: 10.1002/batt.201800148.
  • Pervaiz, S.; Qureshi, T. A.; Kashwani, G.; Kannan, S. 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review. Mater. (Basel). 2021, 14(16), 4520. DOI: 10.3390/ma14164520.
  • Cano-Vicent, A.; Tambuwala, M. M.; Hassan, S. S.; Barh, D.; Aljabali, A. A. A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused deposition modelling: Current status, methodology, applications and future prospects. Additive Manufacturing. 2021, 47(September), 102378. DOI: 10.1016/j.addma.2021.102378.
  • Klippstein, H.; Diaz, A.; Sanchez, D. C.; Hassanin, H.; Zweiri, Y. Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review. Adv. Eng. Mater. Mater. 2017, 20(2), 1–17. DOI: 10.1002/adem.201700552.
  • Grady, J. E., et al. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing Part I : System Analysis, Component Identifi Cation, Additive Manufacturing, and Testing of Polymer Composites, 2015; Vol. May. NASA/TM—2015-218748.
  • Lee Sanchez, W. A.; Li, J.-W.; Chiu, H.-T.; Cheng, C.-C.; Chiou, K.-C.; Lee, T.-M.; Chiu, C.-W. Highly Thermally Conductive Epoxy Composites with AlN/BN Hybrid Filler As Underfill Encapsulation Material for Electronic Packaging. Polymers. 2022, 14(14), 2950. DOI: 10.3390/polym14142950.
  • Tian, Z.; Sun, J.; Wang, S.; Zeng, X.; Zhou, S.; Bai, S.; Zhao, N.; Wong, C.-P. A Thermal Interface Material Based on Foam-Templated Three-Dimensional Hierarchical Porous Boron Nitride. J. Mater. Chem. A. 2018, 6(36), 17540–17547. DOI: 10.1039/c8ta05638b.
  • Tian, X.; Pan, T.; Deng, B.; Zhang, H.; Li, Y.; Li, Q.; Li, Y. Synthesis of Sandwich-Like Nanostructure Fillers and Their Use in Different Types of Thermal Composites. ACS Appl. Mater. Interfaces. 2019, 11(43), 40694–40703. DOI: 10.1021/acsami.9b15674.
  • Chen, J.; Huang, X.; Sun, B.; Jiang, P. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability. ACS Nano. 2018, 13(1), 337–345. DOI: 10.1021/acsnano.8b06290.
  • Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible Electronics Based on Inorganic Nanowires. Chem. Soc. Rev. 2015, 44(1), 161–192. DOI: 10.1039/c4cs00116h.
  • Ivanov, E., et al. PLA/Graphene/MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications. Applied Sciences. 2019, 9(6), 1209.
  • Postiglione, G.; Natale, G.; Griffini, G.; Levi, M.; Turri, S. Composites : Part A Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos. Part A. 2015, 76, 110–114. DOI: 10.1016/j.compositesa.2015.05.014.
  • Almuallim, B.; Harun, W. S. W.; Al Rikabi, I. J.; Mohammed, H. A. Thermally Conductive Polymer Nanocomposites for Filament-Based Additive Manufacturing. J. Mater. Sci. 2022, 57(6), 3993–4019. DOI: 10.1007/s10853-021-06820-2.
  • Lebedev, S. M.; Gefle, O. S.; Amitov, E. T.; Berchuk, D. Y.; Zhuravlev, D. V. Poly(lactic Acid)-Based Polymer Composites with High Electric and Thermal Conductivity and Their Characterization. Polym. Test. 2017, 58, 241–248. DOI: 10.1016/j.polymertesting.2016.12.033.
  • Luo, J.; Wang, H.; Zuo, D.; Ji, A.; Liu, Y. Research on the Application of MWCNTs/PLA Composite Material in the Manufacturing of Conductive Composite Products in 3D Printing. Micromachines. 2018, 9(12), 635. DOI: 10.3390/mi9120635.
  • Hoerber, J.; Mueller, M.; Franke, J.; Ranft, F.; Heinle, C.; Drummer, D. Assembly and Interconnection Technologies for MID Based on Thermally Conductive Plastics for Heat Dissipation. Proc. Int. Spring Semin. Electron. Technol. 2011, 103–108.
  • C, M.; Shuang-Zhuang Guo, D. T.; Yang, X. 3D Printing of Multifunctional Nanocomposite Helical Liquid Sensor. Nanoscale Microscale Thermophys. Eng. 2015, 1–5. DOI: 10.1039/C5NR00278H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.