66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Melt processing of graphene-coated polylactide granules for producing biodegradable nanocomposite with higher mechanical strength

, , , , , , & show all
Pages 1421-1437 | Received 31 Dec 2023, Accepted 21 Mar 2024, Published online: 02 Apr 2024

References

  • Raquez, J. M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542. DOI: 10.1016/j.progpolymsci.2013.05.014.
  • Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R., et al. Production and Processing of Graphene and Related Materials. 2D Mater. 2020, 7(2), 022001. DOI: 10.1088/2053-1583/ab1e0a.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321(5887), 385–388. DOI: 10.1126/science.1157996.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8(3), 902–907. DOI: 10.1021/nl0731872.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6(3), 183–191. DOI: 10.1038/nmat1849.
  • Barkan, T. Graphene: The Hype versus Commercial Reality. Nat. Nanotech. 2019, 14(10), 904–906. DOI: 10.1038/s41565-019-0556-1.
  • Kong, W.; Kum, H.; Bae, S. H.; Shim, J.; Kim, H.; Kong, L.; Meng, Y.; Wang, K.; Kim, C.; Kim, J. Path Towards Graphene Commercialization from Lab to Market. Nat. Nanotech. 2019, 14, 927–938. DOI: 10.1038/s41565-019-0555-2.
  • Vasseghian, Y.; Dragoi, E. N.; Almomani, F.; Le, V. T. Graphene Derivatives in Bioplastic: A Comprehensive Review of Properties and Future Perspectives. Chemosphere. 2022, 286, 131892. DOI: 10.1016/j.chemosphere.2021.131892.
  • Banerjee, R.; Ray, S. S. An Overview of the Recent Advances in Polylactide-Based Sustainable Nanocomposites. Polym. Eng. Sci. 2021, 61(3), 617–649. DOI: 10.1002/pen.25623.
  • Li, X.; Lin, Y.; Liu, M.; Meng, L.; Li, C. A Review of Research and Application of Polylactic Acid Composites. J. Appl. Polym. Sci. 2023, 140(7), e53477. DOI: 10.1002/pen.25623.
  • Ranakoti, L.; Gangil, B.; Mishra, S. K.; Singh, T.; Sharma, S.; Ilyas, R. A.; El-Khatib, S. Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials. 2022, 15(12), 4312. DOI: 10.3390/ma15124312.
  • Gond, R. K.; Gupta, M. K. Development and Characterization of PLA-Based Green Nanocomposite Films for Sustainable Packaging Applications. J. Nat. Fibers. 2022, 19(17), 15738–15750. DOI: 10.1080/15440478.2022.2133057.
  • Laraba, S. R.; Luo, W.; Rezzoug, A.; Zahra, Q.; Zhang, S.; Wu, B.; Chen, W.; Xiao, L.; Yang, Y.; Wei, J., et al. Graphene-Based Composites for Biomedical Applications. Green Chem. Lett. Rev. 2022, 15(3), 724–748. DOI: 10.1080/17518253.2022.2128698.
  • Tripathi, N.; Misra, M.; Mohanty, A. K. Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities. ACS Eng. Au. 2021, 1(1), 7–38. DOI: 10.1021/acsengineeringau.1c00011.
  • Li, Y.; Wang, Q.; Wang, S. A Review on Enhancement of Mechanical and Tribological Properties of Polymer Composites Reinforced by Carbon Nanotubes and Graphene Sheet: Molecular Dynamics Simulations. Compos. B Eng. 2019, 160, 348–361. DOI: 10.1016/j.compositesb.2018.12.026.
  • Bellussi, F. M.; Sáenz Ezquerro, C.; Laspalas, M.; Chiminelli, A. Effects of Graphene Oxidation on Interaction Energy and Interfacial Thermal Conductivity of Polymer Nanocomposite: A Molecular Dynamics Approach. Nanomaterials. 2021, 11(7), 1709. DOI: 10.3390/nano11071709.
  • Pinto, A. M.; Cabral, J.; Tanaka, D. A. P.; Mendes, A. M.; Magalhaes, F. D. Effect of Incorporation of Graphene Oxide and Graphene Nanoplatelets on Mechanical and Gas Permeability Properties of Poly(lactic Acid) Films. Polym. Int. 2013, 62(1), 33–40. DOI: 10.1002/pi.4290.
  • Li, W.; Xu, Z.; Chen, L.; Shan, M.; Tian, X.; Yang, C.; Lv, H.; Qian, X. A Facile Method to Produce Graphene Oxide-G-Poly(l-Lactic Acid) as an Promising Reinforcement for PLLA Nanocomposites. Chem. Eng. J. 2014, 237, 291–299. DOI: 10.1016/j.cej.2013.10.034.
  • Kim, M.; Jeong, J. H.; Lee, J.-Y.; Capasso, A.; Bonaccorso, F.; Kang, S. H.; Lee, Y. K.; Lee, G.-H. Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing. ACS Appl. Mater. Interfaces. 2019, 11(12), 11841–11848. DOI: 10.1021/acsami.9b03241.
  • Kim, Y.; Kim, J. S.; Lee, S. Y.; Mahajan, R. L.; Kim, Y. T. Exploration of Hybrid Nanocarbon Composite with Polylactic Acid for Packaging Applications. Int J Biol Macromol. 2020, 144, 135–142. DOI: 10.1016/j.ijbiomac.2019.11.239.
  • Caroline da Silva Rocha, A.; Rodrigues Menezes, L.; da Silva, E. O. D.; Pedrosa, M. C. G. Synergistic Effect of Carbon Nanoparticles on the Mechanical and Thermal Properties of Poly(lactic Acid) As Promising Systems for Packaging. J. Compos. Mater. 2020, 54(27), 4133–4144. DOI: 10.1177/0021998320927779.
  • Marouazi, H. E.; Schueren, B.; Favier, D.; Bolley, A.; Dagorne, S.; Dintzer, T.; Janowska, I. Great Enhancement of Mechanical Features in PLA Based Composites Containing Aligned Few Layer Graphene (FLG), the Effect of FLG Loading, Size, and Dispersion on Mechanical and Thermal Properties. J. Appl. Polym. Sci. 2021, 138(44), 51300. DOI: 10.1002/app.51300.
  • Sanes, J.; Sánchez, C.; Pamies, R.; Avilés, M. D.; Bermúdez, M. D. Extrusion of Polymer Nanocomposites with Graphene and Graphene Derivative Nanofillers: An Overview of Recent Developments. Materials. 2020, 13(3), 549. DOI: 10.3390/ma13030549.
  • Mulla, M. Z.; Rahman, M. R. T.; Marcos, B.; Tiwari, B.; Pathania, S. Poly Lactic Acid (PLA) Nanocomposites: Effect of Inorganic Nanoparticles Reinforcement on Its Performance and Food Packaging Applications. Molecules. 2021, 26(7), 1967. DOI: 10.3390/molecules26071967.
  • Bikiaris, N. D.; Koumentakou, I.; Samiotaki, C.; Meimaroglou, D.; Varytimidou, D.; Karatza, A.; Kalantzis, Z.; Roussou, M.; Bikiaris, R. D.; Papageorgiou, G. Z. Recent Advances in the Investigation of Poly(lactic acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and Their Properties and Applications. Polymers. 2023, 15(5), 1196. DOI: 10.3390/polym15051196.
  • Gao, Y.; Picot, O. T.; Bilotti, E.; Peijs, T. Influence of Filler Size on the Properties of Poly(lactic acid) (PLA)/Graphene Nanoplatelet (GNP) Nanocomposites. Eur. Polym. J. 2016, 86, 117–131. DOI: 10.1016/j.eurpolymj.2016.10.045.
  • Natera, A. D. L. C.; García, A. C.; Betancourt, J. R.; Tapia, M. J. A.; Ceballos, O. V. Polylactic Acid Effectively Reinforced with Reduced Graphitic Oxide. J. Polym. Eng. 2022, 42(8), 736–743. DOI: 10.1515/polyeng-2021-0363.
  • Chartarrayawadee, W.; Molloy, R.; Ratchawet, A.; Janmee, N.; Butsamran, M.; Panpai, K. Fabrication of Poly (Lactic Acid)/Graphene Oxide/Stearic Acid Composites with Improved Tensile Strength. Polym. Compos. 2017, 38(10), 1–7. DOI: 10.1002/pc.23809.
  • Nguyen, D. M.; Jeong, H.; Nguyen, T. K. N.; Nguyen, T. M. L.; Do, T. V. V.; Ha Thuc, C. N.; Perré, P.; Ko, S. C.; Kim, H. G.; Tran, D. T. Polyethylene Glycol Functionalized Graphene Oxide and Its Influences on Properties of Poly(lactic acid) Biohybrid Materials. Compos. B Eng. 2019, 161, 651–658. DOI: 10.1016/j.compositesb.2018.12.152.
  • Li, F.; Zhang, C.; Weng, Y.; Diao, X.; Zhou, Y.; Song, X. Enhancement of Gas Barrier Properties of Graphene Oxide/Poly (Lactic Acid) Films Using a Solvent-Free Method. Materials. 2020, 13(13), 3024. DOI: 10.3390/ma13133024.
  • Botta, L.; Scaffaro, R.; Sutera, F.; Mistretta, M. C. Reprocessing of PLA/Graphene Nanoplatelets Nanocomposites. Polymers. 2018, 10(1), 18. DOI: 10.3390/polym10010018.
  • Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F. K.; Fox, B.; Hameed, N. Distribution States of Graphene in Polymer Nanocomposites: A Review. Compos. B Eng. 2021, 226, 109353. DOI: 10.1016/j.compositesb.2021.109353.
  • Bao, C.; Song, L.; Xing, W.; Yuan, B.; Wilkie, C. A.; Huang, J.; Guo, Y.; Hu, Y. Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and Its Polymer Nanocomposites by Masterbatch-Based Melt Blending. J. Mater. Chem. 2012, 22(13), 1–8. DOI: 10.1039/C2JM16203B.
  • Liu, C.; Ye, S.; Feng, J. Promoting the Dispersion of Graphene and Crystallization of Poly(lactic Acid) with a Freezing-Dried Graphene/PEG Masterbatch. Compos. Sci. Technol. 2017, 144, 215–222. DOI: 10.1016/j.compscitech.2017.03.031.
  • Zhang, X.; Geng, B.; Chen, H.; Chen, Y.; Wang, Y.; Zhang, L.; Liu, H.; Yang, H.; Chen, J. Extraordinary Toughness Enhancement of Poly(lactic Acid) by Incorporating Very Low Loadings of Noncovalent Functionalized Graphene-Oxide via Masterbatch-Based Melt Blending. Chem. Eng. J. 2018, 334, 2014–2020. DOI: 10.1016/j.cej.2017.11.102.
  • Dehnou, K. H.; Norouzi, G. S.; Majidipour, M. A Review: Studying the Effect of Graphene Nanoparticles on Mechanical, Physical and Thermal Properties of Polylactic Acid Polymer. R.S.C. Adv. 2023, 13(6), 3976. DOI: 10.1039/D2RA07011A.
  • Trivedi, D. N.; Rachchh, N. V. Graphene and Its Application in Thermoplastic Polymers As Nano-Filler- a Review. Polymer. 2022, 240, 124486. DOI: 10.1016/j.polymer.2021.124486.
  • Cruz, R.; Nisar, M.; Palza, H.; Yazdani-Pedram, M.; Aguilar-Bolados, H.; Quijada, R. Development of Bio Degradable Nanocomposites Based on PLA and Functionalized Graphene Oxide. Polym. Test. 2023, 124, 108066. DOI: 10.1016/j.polymertesting.2023.108066.
  • Chakraborty, G.; Gupta, A.; Pugazhenthi, G.; Katiyar, V. Facile Dispersion of Exfoliated Graphene/PLA Nanocomposites via in situ Polycondensation with a Melt Extrusion Process and Its Rheological Studies. J. Appl. Polym. Sci. 2018, 2018(33), 46476. DOI: 10.1002/app.46476.
  • Chakraborty, G.; Valapa, R. B.; Pugazhenthi, G.; Katiyar, V. Investigating the Properties of Poly (Lactic Acid)/Exfoliated Graphene Based Nanocomposites Fabricated by Versatile Coating Approach. Int J Biol Macromol. 2018, 113, 1080–1091. DOI: 10.1016/j.ijbiomac.2018.03.037.
  • Chakraborty, G.; Bhattacharjee, S.; Katiyar, V.; Pugazhenthi, G. Melt Rheology Analysis Through Experimental and Constitutional Mechanical Models of Exfoliated Graphene Based Polylactic Acid (PLA) Nanocomposites. J. Polym. Res. 2023, 30(1), 10. DOI: 10.1007/s10965-022-03353-3.
  • Kasbe, P. S.; Gade, H.; Liu, S.; Chase, G. G.; Xu, W. Ultrathin Polydopamine-Graphene Oxide Hybrid Coatings on Polymer Filters with Improved Filtration Performance and Functionalities. ACS Appl. Bio. Mater. 2021, 4(6), 5180–5188. DOI: 10.1021/acsabm.1c00367.
  • Ibrahim, A. F. M.; Lin, Y. S. Synthesis of Graphene Oxide Membranes on Polyester Substrate by Spray Coating for Gas Separation. Chem. Eng. Sci. 2018, 190, 312–319. DOI: 10.1016/j.ces.2018.06.031.
  • La Notte, L.; Cataldi, P.; Ceseracciu, L.; Bayer, I. S.; Athanassiou, A.; Marras, S.; Villari, E.; Brunetti, F.; Reale, A. Fully-Sprayed Flexible Polymer Solar Cells with a Cellulose-Graphene Electrode. Mater. Today Energy. 2018, 7, 105–112. DOI: 10.1016/j.mtener.2017.12.010.
  • Le, H. N.; Thai, D.; Nguyen, T. T.; Dao, T. B. T.; Nguyen, T. D.; Tieu, D. T.; Ha Thuc, C. N. Improving Safety and Efficiency in Graphene Oxide Production Technology. J. Mater. Res. Technol. 2023, 24, 4440–4453. DOI: 10.1016/j.jmrt.2023.04.050.
  • Le, N. H.; Seema, H.; Kemp, K. C.; Ahmed, N.; Tiwari, J. N.; Park, S.; Kim, K. S. Solution-Processable Conductive Micro-Hydrogels of Nanoparticle/Graphene Platelets Produced by Reversible Self-Assembly and Aqueous Exfoliation. J. Mater. Chem. A. 2013, 1(41), 12900–12908. DOI: 10.1039/C3TA12735D.
  • Luo, J.; Kim, J.; Huang, J. Material Processing of Chemically Modified Graphene: Some Challenges and Solutions. Acc. Chem. Res. 2013, 46(10), 2225–2234. DOI: 10.1021/ar300180n.
  • Chieng, B. W.; Ibrahim, N. A.; Yunus, W. M. Z. W.; Hussein, M. Z. Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers. 2014, 6(1), 93–104. DOI: 10.3390/polym6010093.
  • Chen, Y.; Yao, X.; Gu, Q.; Pan, Z. Non-Isothermal Crystallization Kinetics of Poly (Lactic Acid)/Graphene Nanocomposites. J. Polym. Eng. 2013, 33(2), 163–171. DOI: 10.1515/polyeng-2012-0124.
  • Kim, I. H.; Jeong, Y. G. Polylactide/Exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity. J. Polym. Sci., B: Polym. Phys. 2010, 48(8), 850–858. DOI: 10.1002/polb.21956.
  • Li, F. J.; Zhang, S. D.; Liang, J. Z.; Wang, J. Z. Effect of Polyethylene Glycol on the Crystallization and Impact Properties of Polylactide-Based Blends. Polym. Adv. Technol. 2015, 26(5), 465–475. DOI: 10.1002/pat.3475.
  • Yang, J. H.; Shen, Y.; He, W. D.; Zhang, N.; Huang, T.; Zhang, J. H.; Wang, Y. Synergistic Effect of Poly(ethylene Glycol) and Graphene Oxides on the Crystallization Behavior of Poly(l-Lactide). J. Appl. Polym. Sci. 2013, 130(5), 3498–3508. DOI: 10.1002/app.39371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.