32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterization of polylactic acid-based composite incorporating with BaSO4 for low radiation dose shielding

, , , & ORCID Icon
Pages 1733-1744 | Received 22 Dec 2023, Accepted 13 May 2024, Published online: 20 May 2024

References

  • Martin, A.; Harbison, S.; Beach, K.; Cole, P. An Introduction to Radiation Protection, 7th ed.; CRC Press, 2018.
  • Ribeiro, A.; Husson, O.; Drey, N.; Murray, I.; May, K.; Thurston, J.; Oyen, W. Ionising Radiation Exposure from Medical Imaging–A Review of Patient’s (Un) Awareness. Radiography 2020, 26(2), e25–e30. DOI: 10.1016/j.radi.2019.10.002.
  • Fadeenko, V.; Fadeenko, I.; Davydov, V.; Reznik, V.; Kruglov, V.; Moroz, A.; Popovskiy, N.; Dudkin, V.; Nikolaev, D. Remote Environmental Monitoring in the Area of a Nuclear Power plant, IOP Conference Series: Earth and Environmental Science, Poland, IOP Publishing, 2019; pp 012022.
  • Höeffgen, S. K.; Metzger, S.; Steffens, M. Investigating the Effects of Cosmic Rays on Space Electronics. Front. Phys. 2020, 8, 318. DOI: 10.3389/fphy.2020.00318.
  • Lakhwani, O.; Dalal, V.; Jindal, M.; Nagala, A. Radiation Protection and Standardization. J. Clin. Orthop. Trauma. 2019, 10(4), 738–743. DOI: 10.1016/j.jcot.2018.08.010.
  • McCaffrey, J.; Shen, H.; Downton, B.; Mainegra‐Hing, E. Radiation Attenuation by Lead and Nonlead Materials Used in Radiation Shielding Garments. Med. Phys. 2007, 34(2), 530–537. DOI: 10.1118/1.2426404.
  • Tyagi, G.; Singhal, A.; Routroy, S.; Bhunia, D.; Lahoti, M. Radiation Shielding Concrete with Alternate Constituents: An Approach to Address Multiple Hazards. J. Hazard. Mater. 2021, 404, 124201. DOI: 10.1016/j.jhazmat.2020.124201.
  • Kumar, A.; Kumar, A.; Mms, C.-P.; Chaturvedi, A. K.; Shabnam, A. A.; Subrahmanyam, G.; Mondal, R.; Gupta, D. K.; Malyan, S. K.; Kumar, S. S. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. Int. J. Environ. Res. Public Health 2020, 17(7), 2179. DOI: 10.3390/ijerph17072179.
  • Engwa, G. A.; Ferdinand, P. U.; Nwalo, F. N.; Unachukwu, M. N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. Poison. Mod. World-New Tricks For An Old Dog 2019, 10, 70–90.
  • Dórea, J. G. Environmental Exposure to Low-Level Lead (Pb) Co-Occurring with Other Neurotoxicants in Early Life and Neurodevelopment of Children. Environ. Res. 2019, 177, 108641. DOI: 10.1016/j.envres.2019.108641.
  • Kumar, S. Occupational and Environmental Exposure to Lead and Reproductive Health Impairment: An Overview. Indian J. Occup. Environ. Med. 2018, 22(3), 128. DOI: 10.4103/ijoem.IJOEM_126_18.
  • Danthanavat, N.; Mongkolsuk, M.; Tochaikul, G.; Sriwongta, S.; Piyajaroenporn, A.; Lithreungnam, C.; Moonkum, N. Study of Epoxy Shielding Material with Barium Sulphate for Development of Radiation Protection Materials in Low-Dose Diagnostic X-Ray. Radiat. Eff. Defects Solids. 2021, 176(9–10), 887–895. DOI: 10.1080/10420150.2021.1972113.
  • Moonkum, N.; Pilapong, C.; Daowtak, K.; Tochaikul, G. Evaluation of Silicone Rubber Shielding Material Composites Enriched with BaSo4 and Bi2O3 Particles for Radiation Shielding Properties. Mater. Res. Innovations 2022, 27(5), 296–303. DOI: 10.1080/14328917.2022.2141953.
  • Tochaikul, G.; Moonkum, N.; Sriwongta, S.; Neamchumnan, M.; Thawornnittayakul, A.; Danthanavat, N. Determination of Appropriate Proportional In-House Flexible Radiation Shielding Material Using Bismuth Powder and Natural-Silicon Rubber Compounds. J. Curr. Sci. Technol. 2021, 11(2), 277–286.
  • Moonkum, N.; Pilapong, C.; Daowtak, K.; Tochaikul, G. Radiation Protection Device Composite of Epoxy Resin and Iodine Contrast Media for Low-Dose Radiation Protection in Diagnostic Radiology. Polymers. 2023, 15(2), 430. DOI: 10.3390/polym15020430.
  • Kolybaba, M.; Tabil, L.; Panigrahi, S.; Crerar, W.; Powell, T.; Wang, B. Biodegradable Polymers: Past, Present, and Future. ASABE/CSBE North Central Intersectional Meeting, Portland, Oregon, American Society of Agricultural and Biological Engineers, 2006; pp 1.
  • Murariu, M.; Dubois, P. PLA Composites: From Production to Properties. Advanced Drug Delivery Reviews. Adv. Drug Deliv. Rev. 2016, 107, 17–46. DOI: 10.1016/j.addr.2016.04.003.
  • Tian, L.; Lu, L.; Feng, J.; Melancon, M. P. Radiopaque Nano and Polymeric Materials for Atherosclerosis Imaging, Embolization and Other Catheterization Procedures. Acta. Pharma. Sinica B. 2018, 8(3), 360–370. DOI: 10.1016/j.apsb.2018.03.002.
  • Chausse, V.; Schieber, R.; Raymond, Y.; Ségry, B.; Sabaté, R.; Kolandaivelu, K.; Ginebra, M.-P.; Pegueroles, M. Solvent-Cast Direct-Writing as a Fabrication Strategy for Radiopaque Stents. Addit. Manuf. 2021, 48, 102392. DOI: 10.1016/j.addma.2021.102392.
  • Oglat, A. A.; Shalbi, S. M. An Alternative Radiation Shielding Material Based on Barium-Sulphate (BaSo4)-Modified Fly Ash Geopolymers. Gels. 2022, 8(4), 227. DOI: 10.3390/gels8040227.
  • Speck, U. X-Ray Contrast Media: Overview, Use and Pharmaceutical Aspects; Springer Nature: Cham, Switzerland, 2018.
  • Verma, S.; Amritphale, S.; Das, S. Development of Advanced, X-Ray Radiation Shielding Panels by Utilizing Red Mud-Based Polymeric Organo-Shielding Gel-Type Material. Waste Biomass Valori. 2017, 8(6), 2165–2175. DOI: 10.1007/s12649-016-9701-3.
  • Umar, A.; Atabo, S. A Review of Imaging Techniques in Scientific Research/Clinical Diagnosis. MOJ Anat. Physiol 2019, 6(5), 175–183. DOI: 10.15406/mojap.2019.06.00269.
  • Somano, T. T. The Electromagnetic Wave Application of X-Ray in Medical Treatment. Am. J. Phys. And Appl 2022, 10(4), 62.
  • Zakariya, N. I.; Kahn, M. Benefits and Biological Effects of Ionizing Radiation. Sch. Acad. J. Biosci. 2014, 2(9), 583–591.
  • Rossi, H. H. Correlation of Radiation Quality and Biological Effect. Ann. New York Acad. Sci (US). 1964, 114(1), 4–15. DOI: 10.1111/j.1749-6632.1964.tb53559.x.
  • Tochaikul, G.; Mongkolsuk, M.; Kobutree, P.; Kawvised, S.; Pairodsantikul, P.; Wongsa, P.; Moonkum, N. Properties of Cement Portland Composite Prepared with Barium Sulfate and Bismuth Oxide for Radiation Shielding. Radiat. Eff. Defects Solids. 2023, 2023, 1–19. DOI: 10.1080/10420150.2023.2294037.
  • Thumwong, A.; Chinnawet, M.; Intarasena, P.; Rattanapongs, C.; Tokonami, S.; Ishikawa, T.; Saenboonruang, K. A Comparative Study on X-Ray Shielding and Mechanical Properties of Natural Rubber Latex Nanocomposites Containing Bi2O3 or BaSo4: Experimental and Numerical Determination. Polymers. 2022, 14(17), 3654. DOI: 10.3390/polym14173654.
  • Plangpleng, N.; Charoenphun, P.; Polpanich, D.; Sakulkaew, K.; Buasuwan, N.; Onjun, O.; Chuamsaamarkkee, K. Flexible Gamma Ray Shielding Based on Natural Rubber/BaSo4 Nanocomposites. Radiat. Phys. Chem. 2022, 199, 110311. DOI: 10.1016/j.radphyschem.2022.110311.
  • Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W.; Scott, J. H. J.; Joy, D. C. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; springer, 2017.
  • Chang, L.; Zhang, Y.; Liu, Y.; Fang, J.; Luan, W.; Yang, X.; Zhang, W. Preparation and Characterization of Tungsten/Epoxy Composites for γ-Rays Radiation Shielding. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interactions With Mater. Atoms 2015, 356, 88–93. DOI: 10.1016/j.nimb.2015.04.062.
  • Yu, L.; Yap, P. L.; Santos, A.; Tran, D.; Losic, D. Lightweight Bismuth Titanate (Bi4ti3o12) Nanoparticle-Epoxy Composite for Advanced Lead-Free X-Ray Radiation Shielding. ACS Appl. Nano Mater. 2021, 4(7), 7471–7478. DOI: 10.1021/acsanm.1c01475.
  • Yang, J.-N.; Xu, Y.-X.; Nie, S.-B.; Cheng, G.-J.; Tao, Y.-L.; Zhu, J.-B. Morphological Structure, Impact Toughness, Thermal Property and Kinetic Analysis on the Cold Crystallization of Poly (Lactic Acid) Bio-Composites Toughened by Precipitated Barium Sulfate. Polym. Degrad. Stab. 2018, 158, 176–189. DOI: 10.1016/j.polymdegradstab.2018.11.008.
  • Nuutinen, J.-P.; Clerc, C.; Törmälä, P. Mechanical Properties and in vitro Degradation of Self-Reinforced Radiopaque Bioresorbable Polylactide Fibres. J. Biomat. Sci. Polym. Ed. 2003, 14(7), 665–676. DOI: 10.1163/156856203322274923.
  • McMahon, S.; Bertollo, N.; O’Cearbhaill, E. D.; Salber, J.; Pierucci, L.; Duffy, P.; Dürig, T.; Bi, V.; Wang, W. Bio-Resorbable Polymer Stents: A Review of Material Progress and Prospects. Prog. Polym. Sci. 2018, 83, 79–96. DOI: 10.1016/j.progpolymsci.2018.05.002.
  • Sneha, K.; Sailaja, G. Intrinsically Radiopaque Biomaterial Assortments: A Short Review on the Physical Principles, X-Ray Imageability, and State-Of-The-Art Developments. J. Mater Chem. B. 2021, 9(41), 8569–8593. DOI: 10.1039/D1TB01513C.
  • Im, S. H.; Im, D. H.; Park, S. J.; Jung, Y.; Kim, D.-H.; Kim, S. H. Current Status and Future Direction of Metallic and Polymeric Materials for Advanced Vascular Stents. Prog. Mater. Sci. 2022, 126, 100922. DOI: 10.1016/j.pmatsci.2022.100922.
  • Dong, Y.; Xie, Y.; Ma, X.; Yan, L.; Yu, H.-Y.; Yang, M.; Abdalkarim, S. Y. H.; Jia, B. Multi-Functional Nanocellulose Based Nanocomposites for Biodegradable Food Packaging: Hybridization, Fabrication, Key Properties and Application. Carbohydr. Polym. 2023, 321, 121325. DOI: 10.1016/j.carbpol.2023.121325.
  • Ji, H.; Abdalkarim, S. Y. H.; Chen, X.; Chen, X.; Lu, W.; Chen, Z.; Yu, H.-Y. Deep Insights into Biodegradability Mechanism and Growth Cycle Adaptability of Polylactic Acid/Hyperbranched Cellulose Nanocrystal Composite Mulch. Int. J. Biol. Macromol. 2024, 254, 127866. DOI: 10.1016/j.ijbiomac.2023.127866.
  • Yan, L.; Abdalkarim, S. Y. H.; Chen, X.; Chen, Z.; Lu, W.; Zhu, J.; Jin, M.; Yu, H.-Y. Nucleation and Property Enhancement Mechanism of Robust and High-Barrier PLA/CNFene Composites with Multi-Level Reinforcement Structure. Compos. Sci. Technol. 2024, 245, 110364. DOI: 10.1016/j.compscitech.2023.110364.
  • Lu, L.; Sun, M.; Lu, Q.; Wu, T.; Huang, B. High Energy X-Ray Radiation Sensitive Scintillating Materials for Medical Imaging, Cancer Diagnosis and Therapy. Nano. Energy. 2021, 79, 105437. DOI: 10.1016/j.nanoen.2020.105437.
  • Barala, S. S.; Manda, V.; Jodha, A. S.; Meghwal, L. R.; C, A.; Gopalani, D. Ethylene‐Propylene Diene Monomer‐Based Polymer Composite for Attenuation of High Energy Radiations. J. Appl. Polym. Sci. 2021, 138(18), 50334. DOI: 10.1002/app.50334.
  • Jiang, X.; Zhu, X.; Chang, C.; Liu, S.; Luo, X. X-Ray Shielding Structural and Properties Design for the Porous Transparent BaSo4/Cellulose Nanocomposite Membranes. Int. J. Biol. Macromol. 2019, 139, 793–800. DOI: 10.1016/j.ijbiomac.2019.07.186.
  • Sidauruk, L.; Sianturi, H. A.; Rianna, M.; Sembiring, T.; Barus, D. A. In Determination of Half Value Layer (HVL) Value on X-Rays Radiography with Using Aluminum, Copper and Lead (Al, Cu, and Sn) Attenuators. J. Phys.: Conf. Ser. 2018, 1116, 032032. DOI: 10.1088/1742-6596/1116/3/032032.
  • Abdolahzadeh, T.; Morshedian, J.; Ahmadi, S. Novel Polyethylene/Tungsten Oxide/Bismuth Trioxide/Barium Sulfate/Graphene Oxide Nanocomposites for Shielding Against X-Ray Radiations. Int. J. Radiat. Res 2023, 21(1), 79–87.
  • Chan, W.; Bini, T.; Venkatraman, S. S.; Boey, F. Effect of radio‐opaque filler on biodegradable stent properties. J. Biomed. Mater. Res. Part A 2006, 79(1), 47–52. DOI: 10.1002/jbm.a.30714.
  • Harris, A. M.; Lee, E. C. Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity. J. Appl. Polym. Sci. 2008, 107(4), 2246–2255. DOI: 10.1002/app.27261.
  • Tümer, E. H.; Erbil, H. Y. Extrusion-Based 3D Printing Applications of PLA Composites: A Review. Coatings. 2021, 11(4), 390. DOI: 10.3390/coatings11040390.
  • Nyman, U.; Björkdahl, P.; Olsson, M.-L.; Gunnarsson, M.; Goldman, B. Low-Dose Radiation with 80-kVp Computed Tomography to Diagnose Pulmonary Embolism: A Feasibility Study. Acta. radiologica. 2012, 53(9), 1004–1013. DOI: 10.1258/ar.2012.120327.
  • Wichmann, J.; Kraft, J.; Nöske, E.-M.; Bodelle, B.; Burck, I.; Scholtz, J.-E.; Frellesen, C.; Wagenblast, J.; Kerl, J.; Bauer, R. Low-Tube-Voltage 80-kVp Neck CT: Evaluation of Diagnostic Accuracy and Interobserver Agreement. AJNR Am. J. Neuroradiol 2014, 35(12), 2376–2381. DOI: 10.3174/ajnr.A4052.
  • Tochaikul, G.; Danthanavat, N.; Pilapong, C.; Moonkum, N. Effect of Low Dose Radiation from General X-Ray to T-Cell Lymphocyte Expression Using an in vitro Method. Radiat. Eff. Defects Solids 2022, 177(3–4), 1–9. DOI: 10.1080/10420150.2022.2039926.
  • Tochaikul, G.; Pilapong, C.; Daowtak, K.; Moonkum, N. Influence of Radiation Dose from Repeated Chest X-Ray on Cell Morphology and Proliferation in Peripheral Blood Mononuclear Cells an in vitro Study. Radiat. Eff. Defects Solids. 2023, 178(7–8), 929–937. DOI: 10.1080/10420150.2023.2195654.
  • Aygün, B.; Şakar, E.; Agar, O.; Sayyed, M.; Karabulut, A.; Singh, V. P. Development of New Heavy Concretes Containing Chrome-Ore for Nuclear Radiation Shielding Applications. Prog. Nucl. Energy. 2021, 133, 103645. DOI: 10.1016/j.pnucene.2021.103645.
  • Dauer, L. [Review of the Book Radiation Shielding for Diagnostic Radiology, by D. G. Sutton, C. J. Martin, J. R. Williams, & D. J. Peet]. Radiat Shielding for Diagn Radiol. 2012, 152(4), 472–474. DOI: 10.1093/rpd/ncs274.
  • Ipbüker, C.; Nulk, H.; Gulik, V.; Biland, A.; Tkaczyk, A. H. Radiation Shielding Properties of a Novel Cement–Basalt Mixture for Nuclear Energy Applications. Nucl. Eng. Des. 2015, 284, 27–37. DOI: 10.1016/j.nucengdes.2014.12.007.
  • Mishra, R. K.; Thomas, M. G.; Abraham, J.; Joseph, K.; Thomas, S. Electromagnetic Interference Shielding Materials for Aerospace Application: A State of the Art. Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications. 2018, Chapter 15, 327–365.
  • Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C. Electrostatic Space Radiation Shielding. Advances in Space Research. Adv. Space. Res. 2008, 42(6), 1043–1049. DOI: 10.1016/j.asr.2007.09.015.
  • Sherer, M. A. S.; Visconti, P. J.; Ritenour, E. R.; Kelli Haynes, M. Radiation Protection in Medical Radiography, 7th ed.; Elsevier Health Sci, 2013.
  • Amis, E. S., Jr; Butler, P. F.; Applegate, K. E.; Birnbaum, S. B.; Brateman, L. F.; Hevezi, J. M.; Mettler, F. A.; Morin, R. L.; Pentecost, M. J.; Smith, G. G. American College of Radiology White Paper on Radiation Dose in Medicine. J. Am. Coll. Radiol. 2007, 4(5), 272–284. DOI: 10.1016/j.jacr.2007.03.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.