44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced performance of hybrid piezo/triboelectric using BaTiO3/polymer composite film modified with rGO

, , , , &
Pages 1745-1754 | Received 06 Feb 2024, Accepted 15 May 2024, Published online: 23 May 2024

References

  • Li, Y.; Tan, J.; Liang, K.; Li, Y.; Sun, J.; Zhang, H.; Luo, C.; Li, P.; Xu, J.; Jiang, H., et al. Enhanced Piezoelectric Performance of Multi-Layered Flexible Polyvinylidene fluoride–BaTiO3–rGO Films for Monitoring Human Body Motions. J. Mater. Sci.: Mater. Electron. 2022, 33(7), 4291–4304. DOI: 10.1007/s10854-021-07622-7.
  • Luo, J.; Zhang, L.; Wu, T.; Song, H.; Tang, C. Flexible Piezoelectric Pressure Sensor with High Sensitivity for Electronic Skin Using Near-Field Electrohydrodynamic Direct-Writing Method. Extreme Mech. Lett. 2021, 48, 101279. DOI: 10.1016/j.eml.2021.101279.
  • Xia, M. J.; Luo, C. X.; Su, X. X.; Li, Y. H.; Li, P. W.; Hu, J.; Li, G.; Jiang, H. B.; Zhang, W. D. KNN/PDMS/C-Based Lead-Free Piezoelectric Composite Film for Flexible Nanogenerator. J. Mater. Sci.: Mater. Electron. 2019, 30(8), 7558–7566. DOI: 10.1007/s10854-019-01070-0.
  • Ding, W. J.; Xu, W. W.; Dong, Z. J.; Liu, Y. Q.; Wang, Q.; Shiotani, T. Piezoelectric Properties and Microstructure of Ceramicrete-Based Piezoelectric Composites. Ceram. Int. 2021, 47(21), 29681–29687. DOI: 10.1016/j.ceramint.2021.07.139.
  • Tien, N. T.; Trung, T. Q.; Seoul, Y. G.; Kim, D. I.; Lee, N.-E. Physically Responsive Field-Effect Transistors with Giant Electromechanical Coupling Induced by Nanocomposite Gate Dielectrics. ACS Nano 2011, 5(9), 7069–7076. DOI: 10.1021/nn2017827.
  • Li, J. T.; Li, J. J.; Wu, H. H.; Zhou, O. W.; Chen, J.; Lookman, T.; Su, Y. J.; Qiao, L. J.; Bai, Y. Influence of Phase Transitions on Electrostrictive and Piezoelectric Characteristics in PMN–30PT Single Crystals. ACS Appl. Mater. Interfaces 2021, 13(32), 38467–38476. DOI: 10.1021/acsami.1c07714.
  • Luo, C. X.; Hu, S. H.; Xia, M. J.; Li, P. W.; Hu, J.; Li, G.; Jiang, H. B.; Zhang, W. D. A Flexible Lead-Free BaTiO3/PDMS/C Composite Nanogenerator As a Piezoelectric Energy Harvester. Energy Technol. 2018, 6(5), 922–927. DOI: 10.1002/ente.201700756.
  • Sriphan, S.; Charoonsuk, T.; Maluangnont, T.; Vittayakorn, N. High-Performance Hybridized Composited-Based Piezoelectric and Triboelectric Nanogenerators Based on BaTiO3/PDMS Composite Film Modified with Ti0.8O2 Nanosheets and Silver Nanopowders Cofillers. ACS Appl. Energy Mater. 2019, 2(5), 3840–3850. DOI: 10.1021/acsaem.9b00513.
  • Bélanger, M. C.; Marois, Y. Hemocompatibility, Biocompatibility, Inflammatory and in vivo Studies of Primary Reference Materials Low-Density Polyethylene and Polydimethylsiloxane: A Review. 2001. J. Biomed. Mater. Res. 2001, 58(5), 467–477. DOI: 10.1002/jbm.1043.
  • Ko, E. J.; Jeon, S. J.; Han, Y. W.; Jeong, S. Y.; Kang, C. Y.; Sung, T. H.; Seong, K. W.; Moon, D. K. Synthesis and Characterization of Nanofiber-Type Hydrophobic Organic Materials As Electrodes for Improved Performance of PVDF-Based Piezoelectric Nanogenerators. Nano. Energy. 2019, 58, 11–22. DOI: 10.1016/j.nanoen.2019.01.022.
  • Karan, S. K.; Mandal, D.; Khatua, B. B. Self-Powered Flexible Fe-Doped RGO/PVDF Nanocomposite: An Excellent Material for a Piezoelectric Energy Harvester Nanoscale. 2015, 7(24), 10655–10666. DOI: 10.1039/C5NR02067K.
  • Duan, S. S.; Wu, J.; Xia, J.; Lei, W. Innovation Strategy Selection Facilitates High-Performance Flexible Piezoelectric Sensors. Sensors 2020, 20, 2820. DOI: 10.3390/s20102820.
  • Bhunia, R.; Gupta, S.; Fatma, B.; Prateek, R. K.; Gupta, R. K.; Garg, A. Milli-Watt Power Harvesting from Dual Triboelectric and Piezoelectric Effects of Multifunctional Green and Robust Reduced Graphene Oxide/P(VDF-TrFE) Composite Flexible Films. ACS Appl. Mater. Interfaces 2019, 11(41), 38177–38189. DOI: 10.1021/acsami.9b13360.
  • Thongmee, N.; Sodmnamorn, P.; Prasertpalichat, S.; Bongkarn, T.; Sumang, R. The Relationship of Phase Structure, Microstructure and Electrical Properties of BNT-BT-BST Ceramic. Integr. Ferroelectr. 2022, 225(1), 66–79. DOI: 10.1080/10584587.2022.2054057.
  • Thongsamrit, W.; Phrompet, C.; Maneesai, K.; Karaphun, A.; Tuichai, W.; Sriwong, C.; Ruttanapun, C. Effect of Grain Boundary Interfaces on Electrochemical and Thermoelectric Properties of a Bi2Te3/reduced Graphene Oxide Composites. Mater. Chem. Phys. 2020, 250(123196), 0254–0584. DOI: 10.1016/j.matchemphys.2020.123196.
  • Ferreira, P.; Carvalho, Á.; Correia, T. R.; Antunes, B. P.; Correia, I. J.; Alves, P. Functionalization of Polydimethylsiloxane Membranes to Be Used in the Production of Voice Prostheses. Sci. Technol. Adv. Mater. 2013, 14(5), 055006. DOI: 10.1088/1468-6996/14/5/055006.
  • Taşdemir, M.; Şenaslan, F.; Çelik, A. Investigation of Corrosion and Thermal Behavior of PU–Pdms-coated AISI 316L. e-Polymers 2021, 21(1), 355–365. DOI: 10.1515/epoly-2021-0035.
  • Nayak, S.; Sahoo, B.; Chakia, T. K.; Khastgir, D. Facile Preparation of Uniform Barium Titanate (BaTiO3) Multipods with High Permittivity: Impedance and Temperature Dependent Dielectric Behavior. R.S.C. Adv 2014, 4(3), 1212–1224. DOI: 10.1039/C3RA44815K.
  • Storm, M. M.; Johnsen, R. E.; Norby, P. In situ X-Ray Powder Diffraction Studies of the Synthesis of Graphene Oxide and Formation of Reduced Graphene Oxide. J. Solid State Chem. 2016, 240, 49–54. DOI: 10.1016/j.jssc.2016.05.019.
  • Johnson, L. M.; Gao, L.; Shields, C. W.; Smith, M.; Efimenko, K.; Cushing, K.; Genzer, J.; López, G. P. Elastomeric Microparticles for Acoustic Mediated Bioseparations. J. Nanobiotechnology 2013, 11, 1–8. DOI: 10.1186/1477-3155-11-22.
  • Lee, J.; Kim, J.; Kim, H.; Bae, Y. M.; Lee, K.-H.; Cho, H. J. Effect of Thermal Treatment on the Chemical Resistance of Polydimethylsiloxane for Microfluidic Devices. J. Micromech. Microeng. 2013, 23(3), 035007. DOI: 10.1088/0960-1317/23/3/035007.
  • Konios, D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J. Coll. Interf. Sci. 2014, 430, 108–112. DOI: 10.1016/j.jcis.2014.05.033.
  • Kaftelen-Odabaş, H.; Odabaş, A.; Caballero-Briones, F.; Arvizu-Rodriguez, L. E.; Özdemir, M.; Baydoğan, M. Effects of Polyvinylpyrrolidone As a Dispersant Agent of Reduced Graphene Oxide on the Properties of Carbon Fiber-Reinforced Polymer Composites. J. Reinf. Plast. Compos. 2023, 42(19–20), 1039–1053. DOI: 10.1177/07316844221145560.
  • Yoon, H.-J.; Ryu, H.; Kim, S.-W. Sustainable Powering Triboelectric Nanogenerators: Approaches and the Path Towards Efficient Use. Nano. Energy. 2018, 51, 270–285. DOI: 10.1016/j.nanoen.2018.06.075.
  • Niu, S.; Wang, Z. L. Theoretical Systems of Triboelectric Nanogenerators. Nano. Energy. 2015, 14, 161–192. DOI: 10.1016/j.nanoen.2014.11.034.
  • Panpho, P.; Charoonsuk, T.; Vittayakorn, N.; Bongkarn, T.; Sumang, R. Flexible Hybrid Piezo/Triboelectric Energy Harvester Based on a Lead-Free BNT-BT-KNN Ceramic-Polymer Composite Film; Ceramic International: inpress. 10.1016/j.ceramint.2024.03.208.
  • Mariello, M. Recent Advances on Hybrid Piezo-Triboelectric Bio-Nanogenerators: Materials, Architectures and Circuitry. Nanoenergy Advances. 2022, 2(1), 64–109. DOI: 10.3390/nanoenergyadv2010004.
  • Bai, P.; Zhu, G.; Zhou, Y. S.; Wang, S.; Ma, J.; Zhang, G.; Wang, Z. L. Dipole-Moment-Induced Effect on Contact Electrification for Triboelectric Nanogenerators. Nano Res. 2014, 7(7), 990–997. DOI: 10.1007/s12274-014-0461-8.
  • Zhang, Y. Y.; Jiang, S. L.; Yu, Y.; Zeng, Y. K.; Zhang, G. Z.; Zhang, Q. F.; He, J. G. Crystallization Behavior and Phase-Transformation Mechanism with the Use of Graphite Nanosheets in Poly(vinylidene Fluoride) Nanocomposites. J. Appl. Polym. Sci 2012, 125, 314–319. DOI: 10.1002/app.35627.
  • Nag, A.; Simorangkir, R. B. V. B.; Sapra, S.; Buckley, J. L.; O’Flynn, B.; Liu, Z.; Mukhopadhyay, S. C. Reduced Graphene Oxide for the Development of Wearable Mechanical Energyharvesters: A Review. IEEE Sen. J. 2021, 21(23), 26415–26425. DOI: 10.1109/JSEN.2021.3118565.
  • Hu, X.; Ding, Z.; Fei, L.; Xiang, Y. Wearable Piezoelectric Nanogenerators Based on Reduced Graphene Oxide and in situ Polarization-Enhanced PVDF-TrFE Films. J. Mater. Sci. 8, 2019, 54(8), 6401–6409. DOI: 10.1007/s10853-019-03339-5.
  • Xia, Y.; Gang, R. Q.; Xu, L.; Huang, S. J.; Zhou, L. X.; Wang, J. Nanorod-Pillared Mesoporous rGO/ZnO/Au Hybrids for Photocatalytic Cr (VI) Reduction: Enhanced Cr (VI) Adsorption and Solar Energy Harvest. Ceram. Int. 2020, 46(2), 1487–1493. DOI: 10.1016/j.ceramint.2019.09.115.
  • Karan, S. K.; Mandal, D.; Khatua, B. B. B. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester Nanoscale. 2015, 7, 10655–10666. DOI: 10.1039/C5NR02067K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.