58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of 3D printed hydroxyapatite/polymeric bone scaffold

, , , , , , , & show all
Pages 1780-1793 | Received 08 Feb 2024, Accepted 21 May 2024, Published online: 04 Jun 2024

References

  • Maharaj, P. S. R. S.; Maheswaran, R.; Vasanthanathan, A. Numerical Analysis of Fractured Femur Bone with Prosthetic Bone Plates. Procedia. Eng. 2013, 64, 1242–1251. DOI: 10.1016/j.proeng.2013.09.204.
  • Kennedy, S. M.; Amudhan, K.; Jeen Robert, R. B.; Vasanthanathan, A.; Vignesh Moorthi Pandian, A. Experimental and Finite Element Analysis on the Effect of Pores on Bio-Printed Polycaprolactone Bone Scaffolds. Bioprinting. 2023, 34, e00301. DOI: 10.1016/j.bprint.2023.e00301.
  • Salari, N.; Darvishi, N.; Bartina, Y.; Larti, M.; Kiaei, A.; Hemmati, M.; Shohaimi, S.; Mohammadi, M. Global Prevalence of Osteoporosis Among the World Older Adults: A Comprehensive Systematic Review and Meta-Analysis. J. Orthop. Surg. Res. 2021, 16(669), 1–13. DOI: 10.1186/s13018-021-02821-8.
  • Senthil Maharaj, P.; Vasanthanathan, A. An Insight into the Mechanical and Tribological Behavior of Carbon-Flax Reinforced Bioepoxy Hybrid Composite Bone Plates for Orthopedic Applications. Polym. Polym. Compos. 2023, 31, 1–11. DOI: 10.1177/09673911231178444.
  • Zaman, S.; Irfan, M.; Irfan, M.; Muhammad, N.; Zaman, K. M.; Rahim, A.; Rehman, U. S. Overview of Hydroxyapatite; Composition, Structure, Synthesis Methods and Its Biomedical Uses. J. Nanomed. Nanotechnol. 2020, 6, 84–99.
  • Rujitanapanich, S.; Kumpapan, P.; Wanjanoi, P. Synthesis of Hydroxyapatite from Oyster Shell via Precipitation. Energy Procedia. 2014, 56, 112–117. DOI: 10.1016/j.egypro.2014.07.138.
  • Ragunathan, S.; Govindasamy, G.; Raghul, R. D.; Karuppaswamy, M.; Vijayachandratogo, K. R. Hydroxyapatite Reinforced Natural Polymer Scaffold for Bone Tissue Regeneration. Mater. Today: Proc. 2020, 23, 111–118.
  • Nayak, K. A. Hydroxyapatite Synthesis Methodologies: An Overview. Int. J. Chemtech Res. 2010, 2, 903–907.
  • Maharaj, P. S. R. S.; Vasanthanathan, A.; Ebenezer, F.; Giriharan, R.; Athithiyan, M. In situ Bio Printing of Carbon Fiber Reinforced PEEK Hip Implant Stem. In AIP Conference Proceedings; AIP Publishing, 2022; Vol. 2653, p. 10.
  • Kennedy, S. M.; Robert, R. B. J.; Seenikannan, P.; Arunachalam, V.; Amudman, K. An Investigation on Mechanical Properties of 3D Pen Fused Zones for Additive Manufactured Parts. Eng. Solid Mech. 2023, 11(3), 263–270. DOI: 10.5267/j.esm.2023.3.003.
  • Lim, S. D.; Chung, K. J.; Yun, S. J.; Park, S. M. Fabrication of 3D Printed Ceramic Part Using Photo-Polymerization Process. Polymers 2023, 15(7), 1601. DOI: 10.3390/polym15071601.
  • Bogala, R. M. Three-Dimensional (Printing of Hydroxyapatite-Based Scaffolds: A Review. Bioprinting 3D 2022, 28, e00244. DOI: 10.1016/j.bprint.2022.e00244.
  • Robert, J.; Joemax Agu, M.; Rajeev, D.; Sivakumar, A.; Kennedy, S. M. A Complete Overview of Self-Healing Composites Including Its Models in Aeronautical Systems. Polym. Technol. Mater. 2024, 63(9), 1143–1174. DOI: 10.1080/25740881.2024.2325427.
  • Kennedy, S. M.; Raghav, G. R.; Jeen Robert, R. B.; Manikandaraja, G.; Selvakar, M. PEEK-Based 3D Printing: A Paradigm Shift in Implant Revolution for Healthcare. Polym. Technol. Mater. 2024, 63(6), 680–702. DOI: 10.1080/25740881.2024.2302537.
  • Kennedy, S. M.; Vasanthanathan, A.; Rb, J. R.; Amudhan, K. Advancements and Prospects of Polymer-Based Hybrid Composites for Bone Plate Applications. Polym. Technol. Mater. 2024, 63(1), 68–87. DOI: 10.1080/25740881.2023.2274564.
  • Unal, M.; Akkus, O.; Marcus, R. Fundamentals of Musculoskeletal Biomechanics. Musculoskelet. Res. Basic Sci. 2016, 8, 15–36.
  • Abbasi, N.; Hamlet, S.; Love, M. R.; Nguyen, T. N. Porous Scaffolds for Bone Regeneration. Adv. Mater. Dev. 2020, 5(1), 1–9. DOI: 10.1016/j.jsamd.2020.01.007.
  • Weber, F. E.; Ghayor, C. Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited. Front. Physiol. 2018, 9, 960. DOI: 10.3389/fphys.2018.00960.
  • Kumar, R.; Mohanty, S. Hydroxyapatite: A Versatile Bioceramic for Tissue Engineering Application. J. Inorg. Organomet. Polym. 2022, 32(12), 4461–4477. DOI: 10.1007/s10904-022-02454-2.
  • Zhao, W.; Lemaitre, J.; Bowen, P. A Comparative Study of Simulated Body Fluids in the Presence of Proteins. Acta Biomater. 2017, 53, 506–514. DOI: 10.1016/j.actbio.2017.02.006.
  • Gupta, A.; Singhal, R.; Nagpal, A. Reactive Blends of Epoxy Resin (DGEBA) Crosslinked by Anionically Polymerized Polycaprolactam: Process of Epoxy Cure and Kinetics of Decomposition. J. Appl. Polym. Sci. 2004, 92, 687–697. DOI: 10.1002/app.13656.
  • Halloran, W. J.; Wu, C. K. Photopolymerization Monitoring of Ceramic Stereolithography Resins by FTIR Methods. J. Mater. Sci. 2005, 40(1), 71–76. DOI: 10.1007/s10853-005-5689-y.
  • Ji, L.; Chang, W.; Cui, M.; Nie, J. Photopolymerization Kinetics and Volume Shrinkage of 1,6-Hexanediol Diacrylate at Different Temperature. J. Photochem. Photobiol. 2012, 252, 216–221. DOI: 10.1016/j.jphotochem.2012.12.010.
  • Agha, B.; Hamaghareeb, N.; Hussain, H. S. F. Novel Incorporation of Charged Hydroxyapatite Nanoparticles into Resin Adhesive. Cell. Mol. Biol. (Noisy-le-Grand, France). 2023; 11, pp 149–154.
  • Gheisari, H.; Karamian, E.; Abdellahi, M. A Novel Hydroxyapatite –Hardystonite Nanocomposite Ceramic. Ceram. Int. 2015, 41(4), 5967–5975. DOI: 10.1016/j.ceramint.2015.01.033.
  • Prekajski, M.; Miljana, M.; Todorovic, B.; Matkovic, A.; Cincovic, M.; Lukovic, J.; Matovic, B. Ouzo Effect—New Simple Nanoemulsion Method for Synthesis of Strontium Hydroxyapatite Nanospheres. J. Eur. Cerm. 2016, 36(5), 1293–1298. DOI: 10.1016/j.jeurceramsoc.2015.11.045.
  • Ślosarczyk, A.; Paszkiewicz, Z.; Paluszkiewicz, C. FTIR and XRD Evaluation of Carbonated Hydroxyapatite Powders Synthesized by Wet Methods. J. Mol. Struct. 2005, 744-747, 657–661. DOI: 10.1016/j.molstruc.2004.11.078.
  • Kesmez, O. Preparation of Anti-Bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. J. Turkish Chem. Society Section A: Chem. 2020, 7(1), 125–142. DOI: 10.18596/jotcsa.590621.
  • Khan, S. A.; Chaudhry, A. A. Handbook of Ionic Substituted Hydroxyapatites; Elsevier: Amsterdam, NL, 2019; pp. 149–173.
  • Russo, L.; Taraballi, F.; Lupo, C.; Poveda, A.; Barbero, J. J.; Sandri, M.; Tampieri, A.; Nicotra, F.; Cipolla, L. Carbonate Hydroxyapatite Functionalization: A Comparative Study Towards (Bio)molecules Fixation. J. R. Soc. Interface 2014, 4, 20130040. DOI: 10.1098/rsfs.2013.0040.
  • Hassan, M.; Mahmoud, M. M.; Fattah, A. A.; Kandil, S. Microwave-Assisted Preparation of Nano-Hydroxyapatite for Bone Substitutes. Ceram. Int. 2016, 46(3), 3725–3744. DOI: 10.1016/j.ceramint.2015.11.044.
  • Bano, N.; Jikan, S. S.; Basri, H.; Adzila, S.; Dagaci, Z. M. XRD and FTIR Study of A&B Type Carbonated Hydroxyapatite Extracted from Bovine Bone. AIP Conf. Proc. 2019, 2068(1), 020100.
  • Chinnasami, H.; Dey, K. M.; Devireddy, R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioeng. 2023, 10(7), 759. DOI: 10.3390/bioengineering10070759.
  • Murphy, C.; O’Brien, J. F. Understanding the Effect of Mean Pore Size on Cell Activity in Collagen-Glycosaminoglycan Scaffolds. Cell Adh. Migr. 2010, 4(3), 377–181. DOI: 10.4161/cam.4.3.11747.
  • Dias, R. M.; Guedes, M. J.; Flanagan, L. C.; Hollister, J. S.; Fernandes, R. P. Optimization of Scaffold Design for Bone Tissue Engineering: A Computational and Experimental Study. Med. Eng. Phys. 2014, 36(4), 448–457. DOI: 10.1016/j.medengphy.2014.02.010.
  • Yan, C.; Hao, L.; Hussein, A.; Young, P. Ti–6Al–4V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated via Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 2015, 51, 61–73. DOI: 10.1016/j.jmbbm.2015.06.024.
  • Jongprateep, O.; Jitanukul, N.; Saphongxay, K.; Petchareanmongkol, B.; Bansiddhi, A.; Laobuthee, A.; Lertworasirikul, A.; Techapiesancharoenkij, R. Hydroxyapatite Coating on an Aluminum/Bioplastic Scaffold for Bone Tissue Engineering. R.S.C. Adv. 2022, 12(41), 26789–26799. DOI: 10.1039/D2RA03285F.
  • Gerhardt, C. L.; Boccaccini, R. A. Review-Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Mater. 2010, 3(7), 3867–3910. DOI: 10.3390/ma3073867.
  • Vasilescu, E.; Moreno, C. M. J.; Vasilescu, C.; Grigore, F.; Drob, I. S. Interactions of Some New Scaffolds with Simulated Body Fluids. Rev. Chim. 2011, 62(2), 212–215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.