743
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Subdiffusive fractional Black–Scholes model for pricing currency options under transaction costs

| (Reviewing editor)
Article: 1470145 | Received 16 Nov 2017, Accepted 24 Apr 2018, Published online: 26 Jun 2018

References

  • Borovkov, K., Mishura, Y., Novikov, A., & Zhitlukhin, M. (2018). New and refined bounds for expected maxima of fractional Brownian motion. Statistics & Probability Letters, 137, 142–147. doi:10.1016/j.spl.2018.01.025
  • Cheridito, P. (2003). Arbitrage in fractional Brownian motion models. Finance and Stochastics, 7(4), 533–553. doi:10.1007/s007800300101
  • Dai, Q., & Singleton, K. J. (2000). Specification analysis of affine term structure models. The Journal of Finance, 55(5), 1943–1978. doi:10.1111/0022-1082.00278
  • Ekvall, N., Jennergren, L. P., & Näslund, B. (1997). Currency option pricing with mean reversion and uncovered interest parity: A revision of the Garman-Kohlhagen model. European Journal of Operational Research, 100(1), 41–59. doi:10.1016/S0377-2217(95)00366-5
  • Garman, M. B., & Kohlhagen, S. W. (1983). Foreign currency option values. Journal of International Money and Finance, 2(3), 231–237. doi:10.1016/S0261-5606(83)80001-1
  • Gu, H., Liang, J.-R., & Zhang, Y.-X. (2012). Time-changed geometric fractional Brownian motion and option pricing with transaction costs. Physica A: Statistical Mechanics and Its Applications, 391(15), 3971–3977. doi:10.1016/j.physa.2012.03.020
  • Guo, Z. (2017). Option pricing under the merton model of the short rate in subdiffusive Brownian motion regime. Journal of Statistical Computation and Simulation, 87(3), 519–529. doi:10.1080/00949655.2016.1218880
  • Guo, Z., & Yuan, H. (2014). Pricing European option under the time-changed mixed Brownian-fractional Brownian model. Physica A: Statistical Mechanics and Its Applications, 406, 73–79. doi:10.1016/j.physa.2014.03.032
  • Ho, T. S., Stapleton, R. C., & Subrahmanyam, M. G. (1995). Correlation risk, cross-market derivative products and portfolio performance. European Financial Management, 1(2), 105–124. doi:10.1111/j.1468-036X.1995.tb00011.x
  • Janczura, J., Orzeł, S., & Wyłomańska, A. (2011). Subordinated α-stable Ornstein–Uhlenbeck process as a tool for financial data description. Physica A: Statistical Mechanics and Its Applications, 390(23–24), 4379–4387. doi:10.1016/j.physa.2011.07.007
  • Janicki, A., & Weron, A. (1993). Simulation and chaotic behavior of alpha-stable stochastic processes (Vol. 178). CRC Press.
  • Janicki, A., & Weron, A. (1995). Simulation and chaotic behaviour of a-stable stochastic processes. Journal of the Royal Statistical Society-Series A Statistics in Society, 158(2), 339.
  • Karipova, G., & Magdziarz, M. (2017). Pricing of basket options in subdiffusive fractional Black–Scholes model. Chaos, Solitons & Fractals, 102, 245–253. doi:10.1016/j.chaos.2017.05.013
  • Kumar, A., Wyłomańska, A., Połoczański, R., & Sundar, S. (2017). Fractional Brownian motion time-changed by gamma and inverse gamma process. Physica A: Statistical Mechanics and Its Applications, 468, 648–667. doi:10.1016/j.physa.2016.10.060
  • Lux, T., & Marchesi, M. (1999). Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397(6719), 498–500. doi:10.1038/17290
  • Magdziarz, M. (2009a). Black-Scholes formula in subdiffusive regime. Journal of Statistical Physics, 136(3), 553–564. doi:10.1007/s10955-009-9791-4
  • Magdziarz, M. (2009b). Langevin picture of subdiffusion with infinitely divisible waiting times. Journal of Statistical Physics, 135(4), 763–772. doi:10.1007/s10955-009-9751-z
  • Magdziarz, M. (2009c). Stochastic representation of subdiffusion processes with time-dependent drift. Stochastic Processes and Their Applications, 119(10), 3238–3252. doi:10.1016/j.spa.2009.05.006
  • Magdziarz, M. (2010). Path properties of subdiffusiona martingale approach. Stochastic Models, 26(2), 256–271. doi:10.1080/15326341003756379
  • Magdziarz, M., Weron, A., & Weron, K. (2007). Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation. Physical Review E, 75(1), 016708. doi:10.1103/PhysRevE.75.016708
  • Mantegna, R. N., Stanley, H. E. (1995). Scaling behaviour in the dynamics of an economic index. Nature, 376(6535), 46–49. doi:10.1038/376046a0
  • Mastinšek, M. (2006). Discrete–time delta hedging and the Black–Scholes model with transaction costs. Mathematical Methods of Operations Research, 64(2), 227–236. doi:10.1007/s00186-006-0086-0
  • Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 339(1), 1–77. doi:10.1016/S0370-1573(00)00070-3
  • Necula, C. (2002).Option pricing in a fractional Brownian motion environment. Available at SSRN 1286833.
  • Piryatinska, A., Saichev, A., & Woyczynski, W. (2005). Models of anomalous diffusion: The subdiffusive case. Physica A: Statistical Mechanics and Its Applications, 349(3–4), 375–420. doi:10.1016/j.physa.2004.11.003
  • Scalas, E., Gorenflo, R., & Mainardi, F. (2000). Fractional calculus and continuous-time finance. Physica A: Statistical Mechanics and Its Applications, 284(1–4), 376–384. doi:10.1016/S0378-4371(00)00255-7
  • Shokrollahi, F., & Kılıçman, A. (2014). Delta-hedging strategy and mixed fractional Brownian motion for pricing currency option. Mathematical Problems in Engineering, 501, 718768.
  • Shokrollahi, F., & Kılıçman, A. (2014). Pricing currency option in a mixed fractional Brownian motion with jumps environment. Mathematical Problems in Engineering, 2014, 1–13. doi:10.1155/2014/858210
  • Shokrollahi, F., & Sottinen, T. (2017). Hedging in fractional Black–Scholes model with transaction costs. Statistics & Probability Letters, 130, 85–91. doi:10.1016/j.spl.2017.07.014
  • Sottinen, T., & Valkeila, E. (2003). On arbitrage and replication in the fractional Black–Scholes pricing model. Statistics & Decisions/International Mathematical Journal for Stochastic Methods and Models, 21(2/2003), 93–108.
  • Wang, X.-T. (2010). Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model. Physica A: Statistical Mechanics and Its Applications, 389(3), 438–444. doi:10.1016/j.physa.2009.09.041
  • Wang, X.-T., Zhu, E.-H., Tang, -M.-M., & Yan, H.-G. (2010). Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian–fractional Brownian model. Physica A: Statistical Mechanics and Its Applications, 389(3), 445–451. doi:10.1016/j.physa.2009.09.043
  • Xiao, W.-L., Zhang, W.-G., Zhang, X.-L., & Wang, Y.-L. (2010). Pricing currency options in a fractional Brownian motion with jumps. Economic Modelling, 27(5), 935–942. doi:10.1016/j.econmod.2010.05.010
  • Yang, Z. (2017). A new factorization of American fractional lookback option in a mixed jump-diffusion fractional Brownian motion environment. Journal of Modeling and Optimization, 9(1), 53–68.