3,210
Views
2
CrossRef citations to date
0
Altmetric
Research Article

On functions and inverses, both positive, decreasing and convex: And Stieltjes functions

ORCID Icon, & | (Reviewing Editor)
Article: 1477543 | Received 01 Nov 2017, Accepted 14 May 2018, Published online: 14 Jun 2018

References

  • Abramowitz, M., & Stegun, I. (1964). Handbook of mathematical functions. Washington, D.C: Dover. 1965
  • Anderson, G. D., Vamanamurthy, M. K., & Vuorinen, M. (2007). On the generalized convexity and concavity. Journal Mathematical Analysis Applns, 335, 1294–1308. doi:10.1016/j.jmaa.2007.02.016
  • Baricz, A. (2010). Geometrically concave univariate distributions. Journal Mathematical Analysis Applications, 363(1), 182–196. doi:10.1016/j.jmaa.2009.08.029
  • Barsan, V. (2016). New applications of the Lambert and generalized Lambert functions in ferromagnetism and quantum mechanics. arXiv, 1–12, 1611.01014v2.
  • Bhayo, B. A., & Yin, L. (2014). On the generalized convexity and concavity. arXiv, 1–6, 1411.6586v1.
  • Burniston, E. E., & Siewert, C. E. (1973). The use of Riemann problems in solving a class of transcendental equations. Proceedings Cambridge Philosophy Social, 73(1), 111–118. doi:10.1017/S0305004100047526
  • Ehrnstrom, M., & Wahlén, E. (2016). On Whitham’s conjecture of a highest cusped wave for a nonlocal dispersive equation. arXiv, 1-39, 1602.05384v1.
  • Hiriart-Urruty, J.-B., & Martinez-Legaz, J.-E. (2003). New formulas for the Legendre-Fenchel transform. Journal Mathematical Analysis Applns, 288, 544–555. doi:10.1016/j.jmaa.2003.09.012
  • Johnson, W. P. (2002). Combinatorics of higher derivatives of inverses. American Mathematical Monthly, 108(3), 273–277. doi:10.1080/00029890.2002.11919861
  • Kalugin, G. A., Jeffreya, D. J., Corless, R. M., & Borwein, P. B. (2012). Stieltjes and other integral representations for functions of Lambert W. Integral Transforms and Special Functions, 23(8), 1–68. doi:10.1080/10652469.2011.613830
  • Keady, G., & Wiwatanapataphee, B. (2016). Some isoperimetric results concerning unidirectional flows in microchannels. arXiv, 1-68, 1604.03394v2.
  • Keady, G., & Wiwatanapataphee, B. (2017). Inequalities for the fundamental Robin eigenvalue of the Laplacian for box-shaped domains. arXiv, 1-60, 1705.09147v1.
  • Keady, G., & Wiwatanapataphee, B. (2018). Inequalities for the fundamental Robin eigenvalue for the Laplacian on N-dimensional rectangular parallelepipeds, to appear. Mathematical Inequalities and Applications.
  • Lindberg, P. O. (1982). Power convex functions. In S. Schalble (Ed.), Generalised concavity in optimisation and economics (pp. 153–163). NY: Academic Press.
  • Luo, Q., Wang, Z., & Jiurong Han, A. (2015). Padé approximant approach to two kinds of transcendental equations with applications in physics. arXiv, 1-15, 1506.00874v1.
  • Markushin, V. E., Rosenfelder, R., & Schreiber, A. W. . (2003). The transcendental function and quantum mechanical applications. arXiv:0104019v2. Italian Physical Society, 1(2002), 75–94.
  • Merkle, M. (2003). Reciprocally convex functions. Journal Mathematical Analysis Applns, 293, 210–218. doi:10.1016/j.jmaa.2003.12.021
  • Mezo, I., & Keady, G. (2016). Some physical applications of generalized Lambert functions. European Journal of Physics, 37(6). doi:10.1088/0143-0807/37/6/065802
  • Mrševč, M. (2008). Convexity of the inverse function. The Teaching of Mathematics, XI(1), 21–24.
  • Niculescu, C. P. (2003). Convexity according to means. Mathematical Inequalities and Applications, 6(4), 571–579. doi:10.7153/mia-06-53
  • Niculescu, C. P., & Persson, L.-E. (2004). Convex functions and their applications: A contemporary approach. Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris, Tokyo: Springer.
  • Schilling, R. L., Song, R., & Vondracek, Z. (2010). Bernstein functions, theory and applications. Studies in Mathematics 37. Berlin, Germany: De Gruyter.
  • Widder, D. V. (1941). The laplace transform. United Kingdom: Princeton U.P.