4,894
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates

, & ORCID Icon | (Reviewing editor)
Article: 1564531 | Received 11 Sep 2018, Accepted 22 Dec 2018, Published online: 16 Jan 2019

References

  • Bai, Z. (2015). Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 12(3), 555–564. doi:10.3934/mbe.2015.12.555
  • Bellman, R., & Cooke, K. L. (1963). Differential-difference equations. New York and London: Academic Press.
  • Beretta, E., & Kuang, Y. (2002). Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM Journal on Mathematical Analysis, 33(5), 1144–1165. doi:10.1137/S0036141000376086
  • Beretta, E., & Takeuchi, Y. (1995). Global stability of an SIR epidemic model with time delays. Journal of Mathematical Biology, 33, 250–260.
  • Birkhoff, G., & Rota, G. C. (1982). Ordinary differential equations. Boston: Ginn.
  • Blyuss, K. B., & Kyrychko, Y. N. (2014). Instability of disease-free equilibrium in malaria model with immune delay. Mathematical Biosciences, 248, 54–56. doi:10.1016/j.mbs.2013.12.005
  • Bony, J. M. (1969). Principe du Maximum, Inégalité de Harnack et Unicité du Probleme de Cauchy Pour les Opérateurs Elliptiques Dégénérés. Annales de L’institut Fourier (Grenoble), 19, 277–304. doi:10.5802/aif.319
  • Cheng, Y., Wang, J., & Yang, X. (2012). On the global stability of a generalized cholera epidemiological model. Journal of Biological Dynamics, 6(2), 1088–1104. doi:10.1080/17513758.2012.728635
  • Chitnis, N., Cushing, J. M., & Hyman, J. M. (2006). Bifurcation analysis of a mathematical model for malaria transmission. SIAM Journal on Applied Mathematics, 67, 24–25. doi:10.1137/050638941
  • Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 70(5), 1272–1296. doi:10.1007/s11538-008-9299-0
  • Chiyaka, C., Tchuenche, J. M., Garira, W., & Dube, S. (2008). A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria. Applied Mathematics and Computing, 195(3), 641–662.
  • Diekmann, O., Getto, P., & Gyllenberg, M. (2008). Stability and bifurcation analysis of volterra functional equations in the light of suns and stars. SIAM Journal on Mathematical Analysis, 39, 1023–1069. doi:10.1137/060659211
  • Diekmann, O., & Gyllenberg, M. (2012). Equations with infinite delay: Blending the abstract and the concrete. Journal of Differential Equations, 252, 819–851. doi:10.1016/j.jde.2011.09.038
  • Dietz, K., Molineaux, L., & Thomas, A. (1974). A malaria model tested in the african savannah. Bulletin of the World Health Organization, 50, 347–357.
  • Hale, J. K. (1977). Theory of functional differential equations. New York: Springer-Verlag.
  • Jordan, D. W., & Smith, P. (2004). Nonlinear ordinary differential equations. New York, USA: Oxford University Press.
  • Kermack, W. O., & McKermack, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 115(772), 700–721. doi:10.1098/rspa.1927.0118
  • Khan, M. A., Khan, Y., & Islam, S. (2015). Dynamical system of a SEIQV epidemic model with nonlinear generalized incidence rate arising in biology. International Journal of Biomathematics, 10(7), 1750096 (19 pages), Article ID 1550082. doi:10.1142/s1793524517500966
  • Koutou, O., Traoré, B., & Sangaré, B. (2018). Mathematical modeling of malaria transmission global dynamics: Taking into account the immature stages of the vectors. Advances in Difference Equations, 2018(220). doi:10.1186/s13662-018-1671-2
  • Kuang, Y. (1993). Delay differential equations with applications in population dynamics. Mathematics in Science and Engineering, 191, 398 p. Cambridge: Academic Press.
  • Lakshmikantham, V., Leela, S., & Martynyuk, A. A. (1989). Stability analysis of nonlinear systems. New York: Marcel Dekker.
  • Li, M. Y., Shuai, Z., & Wang, C. (2010). Global stability of multi-group epidemic models with distributed delays. Journal of Mathematical Analysis and Applications, 361, 38–47. doi:10.1016/j.jmaa.2009.09.017
  • Macdonald, G. (1957). The epidemiology and control of malaria (pp. 3, 31, 48, 96). London: Oxford University Press.
  • McCluskey, C. C. (2010). Global stability of an SIR epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 7(4), 837–850. doi:10.3934/mbe.2010.7.837
  • Moulay, D., Aziz-Alaoui, M. A., & Cadivel, M. (2011). The chikungunya disease: Modeling, vector and transmission global dynamics. Mathematical Biosciences, 229(1), 50–63. doi:10.1016/j.mbs.2010.10.008
  • Nakata, Y., Enatsu, Y., & Muroya, Y. (2011). On the global stability of an SIRS epidemic model with distributed delays. Discrete and Continuous Dynamical Systems Supplement, 2011, 1119–1128.
  • Ncube, I. (2013). Absolute stability and hopf bifurcation in a plasmodium malaria model incorporating discrete immune response delay. Mathematical Biosciences, 243, 131–135. doi:10.1016/j.mbs.2013.02.010
  • Ngwa, G. A., & Shu, W. S. (2000). A mathematical model for endemic malaria with variable human and mosquito populations. Mathematical and Computer Modelling, 32, 747–763. doi:10.1016/S0895-7177(00)00169-2
  • Olaniyi, S., & Obabiyi, O. S. (2013). Mathematical model for malaria transmission dynamics in human and mosquito populations with nonlinear forces of infection. International Journal of Pure and Applied Mathematics, 88(1), 125–156. doi:10.12732/ijpam.v88i1.10
  • Omondi, E. O., Mbogo, R. W., & Luboobi, L. S. (2018). Mathematical modelling of the impact of testing, treatment and control of the HIV transmission in Kenya. Cogent Mathematics & Statistics, 5, 1–16. doi:10.1080/25742558.2018.1475590
  • Ouedraogo, H., Ouedraogo, W., & Sangaré, B. (2018). A self-diffusion mathematical model to describe the toxin effect on the Zooplankton dynamics. Nonlinear Dynamics and Systems Theory, 18(4), 392–408.
  • Posny, D., & Wang, J. (2014). Modelling cholera in periodic environments. Journal of Biological Dynamics, 8(1), 1–19. doi:10.1080/17513758.2014.896482
  • Rasmussen, H., Wake, G. C., & Donaldson, J. (2003). Analysis of a class distributed delay logistic differential equations. Mathematical and Computer Modelling, 38, 123–132. doi:10.1016/S0895-7177(03)90010-0
  • Rihan, F. A., & Anwar, M. N. (2012). Qualitative analysis of delayed SIR epidemic model with a saturated incidence rate. International Journal of Differential Equations, 2012, 13, Article ID 408637.
  • Ruan, S., Xiao, D., & Beier, J. C. (2008). On the delayed Ross-Macdonald model for malaria transmission. Bulletin of Mathematical Biology, 70(4), 1098–1114. doi:10.1007/s11538-007-9292-z
  • Saker, S. H. (2010). Stability and hopf bifurcations of nonlinear delay malaria epidemic model. Nonlinear Analysis, Real World Applications, 11, 784–799. doi:10.1016/j.nonrwa.2009.01.024
  • Sekiguchi, M., & Ishiwata, E. (2010). Global dynamics of a discretized SIRS epidemic model with time delay. Journal of Mathematical Analysis and Applications, 371, 195–202. doi:10.1016/j.jmaa.2010.05.007
  • Tian, D., & Song, H. (2017). Global dynamics of a vector-borne disease model with two delays and nonlinear transmission rate. Mathematical Methods in the Applied Sciences, 40(1818), 6411–6423. doi:10.1002/mma.4464
  • Traoré, B., Sangaré, B., & Traoré, S. (2017). Mathematical model of malaria transmission with structured vector population and seasonality. Journal of Applied Mathematics, 2017, 15, Article ID 6754097.
  • Traoré, B., Sangaré, B., & Traoré, S. (2018). A mathematical model of malaria transmission in a periodic environment. Journal of Biological Dynamics, 12(1), 400–432. doi:10.1080/17513758.2018.1468935
  • Van den Driessche, P. (1996). Some epidemiological models with delays. In M. Martelli (Ed.), Differential equations and applications to biology and industry (Claremont, CA, 1994) (pp. 507–520). River Edge, NJ: World Scientific Publishing.
  • Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48.
  • Wang, L., Zhang, X., & Liu, Z. (2018). An SEIR epidemic model with relapse and general nonlinear incidence rate with application to media impact. Qualitative Theory of Dynamical Systems, 17(2), 309–329. doi:10.1007/s12346-017-0231-6
  • Wang, Y., Cao, J., Alsaedi, A., & Ahmad, B. (2017). Edge-based SEIR dynamics with or without infectious force in latent period on random networks. Communications in Nonlinear Science and Numerical Simulation, 45, 35–54. doi:10.1016/j.cnsns.2016.09.014
  • Yang, Y., & Xiao, D. (2010). A mathematical model with delays for schistosomiasis. Chinese Annals of Mathematics, 31B(4), 433–446. doi:10.1007/s11401-010-0596-1
  • Zhang, T. L., & Teng, Z. D. (2009). Permanence and extinction for a nonautonomous SIRS epidemic model with time delay. Applied Mathematical Modelling, 33(2), 1058–1071. doi:10.1016/j.apm.2007.12.020
  • Zhang, X., Jia, J., & Song, X. (2014). Permanence and extinction for a nonautonomous malaria transmission model with distributed time delay. Journal of Applied Mathematics, 2014, 16. ID 139046.