616
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of the richardson integration over fluctuations of its step sizes

& | (Reviewing editor)
Article: 1643438 | Received 14 Jan 2019, Accepted 24 Jun 2019, Published online: 08 Aug 2019

References

  • Agrawal, M., & Biswas, S. (2003). Primality and identity testing via Chinese remaindeing. Journal of the ACM (JACM), 50(4), 429–36.
  • Alekseev, V. B. (2004). Abels theorem in problems and solutions: Based on the lectures of professor VI Arnold. Netherlands: Springer Science & Business Media. doi:10.1007/1-4020-2187-9
  • Angelis, C. D. (1994). Self-trapped propagation in the nonlinear cubic-quintic Schrodinger equation: A variational approach. IEEE Journal of Quantum Electronics, 30(3), 818–821. doi:10.1109/3.286174
  • Artin, E. (2007). Algebra with Galois theory (Vol. 15). American Mathematical Soc. Courant Lecture Notes. Providence, US. ISBN: 978-0-8218-4129-7
  • Asmussen, S., & Albrecher, H. (2010). Ruin probabilities. World Scientific Publishing Co Pte Ltd, Singapore, ISBN13: 9789814282529.
  • Bao-Quan, A., Wang, X.-J., Liu, G.-T., Wen, D.-H., Xie, H.-Z., Chen, W., & Liu, L. G. (2003). Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations. Physical Review E, 68(6), 061105. doi:10.1103/PhysRevE.68.061105
  • Battaglia, M., Berge, J., Case, S., Yoobin, J., Ryoo, J., & Wichrowski, N. (2015). AMSC460/CMSC460: Computational methods group project 4: Extrapolation in numerical integration. AMSC460 / CMSC460 Computational Methods, Spring 2015, University of Maryland, Maryland, USA.
  • Bauer, F. L., Rutishauser, H., & Stiefel, E. (1963). New aspects in numerical quadrature. Proceedings of Symposia in Applied Mathematics, 15, 199–218.
  • Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47. doi:10.1038/525S9a
  • Bellucci, S., Tiwari, B. N., & Gupta, N. (2012). Geometrical methods for power network analysis. Berlin, Heidelberg: Springer Science & Business Media. doi:10.1007/978-3-642-33344-6.
  • Blum, H., Lin, Q., & Rannacher, R. (1986). Asymptotic error expansion and Richardson extranpolation for linear finite elements. Numerische Mathematik, 49(1), 11–37. doi:10.1007/BF01389427
  • Bousquet, O., & Elisseeff, A. (2002, mar). Stability and generalization. J. Mach. Learn. Res., 2, 499–526.
  • Bytev, V. V., & Kniehl, B. A. (2016). HYPERDIRE - HYPERgeometric functions dIfferential rEduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function FC of three variables. Computer Physics Communications, 206, 78–83. doi:10.1016/j.cpc.2016.04.016
  • Cabrera, S. D., & Parks, T. W. (1991). Extrapolation and spectral estimation with iterative weighted norm modification. IEEE Transactions on Signal Processing, 39(4), 842–851. doi:10.1109/78.80906
  • Candelas, P., Xenia, C., Green, P. S., & Parkes, L. (1991). A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Physics B, 359(1), 21–74. doi:10.1016/0550-3213(91)90292-6
  • Castan˜eda, P. P. (2002). Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: Itheory. Journal of the Mechanics and Physics of Solids, 50(4), 737–757. doi:10.1016/S0022-5096(01)00099-0
  • Celik, I., & Karatekin, O. (1997). Numerical experiments on application of Richardson extrapolation with nonuniform grids. Journal of Fluids Engineering, 119(3), 584–590.
  • Changpin, L., & Zeng, F. (2015). Numerical methods for fractional calculus. Boca Raton: Chapman and Hal- l/CRC, Taylor & Francis.
  • Chapra, S. C., & Canale, R. P. (1998). Numerical methods for engineers (Vol. 2). New York: Mcgraw- hill.
  • Chen, X., Diez, M., Kandasamy, M., Zhang, Z., Campana, E. F., & Stern, F. (2015). High-fidelity global optimization of shape design by dimensionality reduction, metamodels and deterministic particle swarm. Engineering Optimization, 47(4), 473–494. doi:10.1080/0305215X.2014.895340
  • Choie, Y., Park, Y. K., & Zagier, D. (2017). Periods of modular forms on Γ 0(N)and products of Jacobi theta functions (arXiv preprint arXiv:1706.07885).
  • Ciarlet, P. G. (2001). Handbook of numerical analysis (Vol. 8, pp. 650). Amsterdam: Elsevier. ISBN: 9780444509062.
  • Clarkson, P. A. (1993). Applications of analytic and geometric methods to nonlinear differential equations (Vol. 413). Netherlands: Springer Science & Business Media. doi:10.1007/978-94-011-2082-1
  • Clemens, H. (1984). Some results about Abel-Jacobi mappings. Topics in Transcendental Algebraic Geometry, 106, 289–304.
  • Cöster, K., & Schmidt, K. P. (2016). Extracting critical exponents for sequences of numerical data via series extrapolation techniques. Physical Review E, 94(2), 022101. doi:10.1103/PhysRevE.94.022101
  • Cotterill, E. (2012). Rational curves of degree 11 on a general quintic 3-fold. Quarterly Journal of Mathematics, 63(3), 539–568. doi:10.1093/qmath/har001
  • Courtier, N. E., Richardson, G., & Foster, J. M. (2018). A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells. Applied Mathematical Modelling, 63, 329–348. doi:10.1016/j.apm.2018.06.051
  • Cox, D. A., & Katz, S. (1999). Mirror symmetry and algebraic geometry (Vol. 68). Providence, RI: American Mathematical Society.
  • Deb, K. (2005) Multi-Objective Optimization. In Burke E.K., & Kendall G. (Eds.), Search Methodologies. Springer, Boston, MA, USA. Online ISBN: 978-0-387-28356-2. doi: 10.1007/0-387-28356-0_10.
  • Diez, M., Chen, X., Campana, E. F., & Stern, F. (2013). Reliability-based robust design optimization for ships in real ocean environment. In 12th International Conference on Fast Sea Transportation, FAST2013, Amsterdam, The Netherlands.
  • Dimov, I., Zlatev, Z., & Faragó. (2017). Richardson extrapolation: Practical aspects and applications (Vol. 2). Berlin: Walter de Gruyter GmbH & Co KG (ASIN: B06Y65J6ZT).
  • Faragó, I., Havasi, Á., & Zlatev, Z. (2010). Efficient implementation of stable Richardson extrapolation algorithms. Computers & Mathematics with Applications, 60(8), 2309–2325. doi:10.1016/j.camwa.2010.08.025
  • Farb, B., & Wolfson, J. (2018). Resolvent degree, Hilbert’s 13th problem and geometry (arXiv preprint arXiv:1803.04063)
  • Feller, W. (2015). Fluctuation Theory Of Recurrent Events. In: Schilling R., Vondraček Z., & Woyczyński W. (eds), Selected Papers I. Springer, Cham, Online ISBN: 978-3-319-16859-3.doi:10.1007/978-3-319-16859-3_43
  • Gao, G.-H., Sun, Z.-Z., & Zhang, H.-W. (2014). A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. Journal of Computational Physics, 259, 33–50. doi:10.1016/j.jcp.2013.11.017
  • Gray, J. (2018). Revision and first assignment. Chapter in The Book-- a History of Abstract Algebra, from Algebraic Equations to Modern Algebra. Springer International Publishing (Ebook). ISBN: 978-3-319-94773-0. doi: 10.1007/978-3-319-94773-0
  • Guerra-Gómez, I., Tlelo-Cuautle, E., & Luis, G. (2013). Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Applied Mathematics and Computation, 222, 167–176. doi:10.1016/j.amc.2013.07.059
  • Gupta, N., Tiwari, B. N., & Bellucci, S. (2013). Intrinsic geometric analysis of the network reliability and voltage stability. International Journal of Electrical Power & Energy Systems, 44(1), 872–879. doi:10.1016/j.ijepes.2012.08.032
  • Hairer, E., Lubich, C., & Wanner, G. (2006). Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations (Vol. 31). Berlin Heidelberg: Springer Science & Business Media. doi:10.1007/3-540-30666-8
  • Harkey, J. A., & Kenny, T. W. (2000). 1/f noise considerations for the design and process optimization of piezoresistive cantilevers. Journal of Microelectromechanical Systems, 9(2), 226–235. doi:10.1109/84.846703
  • Huang, G., Song, S., Gupta, J. N. D., & Cheng, W. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417. doi:10.1109/TCYB.2014.2307349
  • Hundsdorfer, W., & Verwer, J. G. (2013). Numerical solution of time-dependent advection-diffusion- reaction equations (Vol. 33). Berlin Heidelberg: Springer Science & Business Media. doi:10.1007/978-3-662-09017-6
  • Igoe, W. B. (1967). Application of Richardson’s extrapolation to numerical evaluation of sonic-boom integrals. Washington, DC: NASA Technical Note D 3806.
  • Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806. doi:10.1093/bioinformatics/btm233
  • Johnsen, T., & Kleiman, S. L. (1996). Rational curves of degree at most 9 on a general quintic threefold. Communications in Algebra, 24(8), 2721–2753. doi:10.1080/00927879608542652
  • Kalogiratou, Z., Monovasilis, T., Psihoyios, G. Y., & Simos, T. E. (2014). Runge–Kutta type methods with special properties for the numerical integration of ordinary differential equations. Physics Reports, 536(3), 75–146. doi:10.1016/j.physrep.2013.11.003
  • Kappe, L.-C., & Warren, B. (1989). An elementary test for the Galois group of a quartic polynomial. The American Mathematical Monthly, 96(2), 133–137. doi:10.1080/00029890.1989.11972158
  • Kaw, A., & Krivanek, J. (2018). Measuring errors, 01.02, Holistic numerical methods, transforming numerical education for the STEM undergraduate. The University of South Florida, Florida, USA
  • Keller, H. B. (2018). Numerical methods for two-point boundary-value problems. New York, NY: Courier Dover Publications.
  • Khargonekar, P. P., Petersen, I. R., & Zhou, K. (1990). Robust stabilization of uncertain linear systems: Quadratic stabilizability and H/sup infinity/control theory. IEEE Transactions on Automatic Control, 35(3), 356–361. doi:10.1109/9.50357
  • Kincaid, D., Kincaid, D. R., & Cheney, E. W. (2009). Numerical analysis: Mathematics of scientific computing (Vol. 2). Providence, RI: American Mathematical Soc.
  • Kiusalaas, J. (2013). Numerical methods in engineering with Python 3. Cambridge: Cambridge university press.
  • Kozioł, A., & Wiśniewski, R. (2008). Optimization of the quintic equation of the state based model for the calculations of different thermodynamic properties. Polish Journal of Chemical Technology, 10(1), 6–10. doi:10.2478/v10026-008-0002-x
  • Křížek, M., & Pekka, N. (1987). On superconvergence techniques. Acta Applicandae Mathematica, 9(3), 175–198. doi:10.1007/BF00047538
  • Křížek, M., & Somer, L. (2015). Why quintic polynomial equations are not solvable in radicals. Application of Mathematics, 2015, 125–131.
  • Kuipo, J. K., Tiwari, B. N., Gupta, N., Khosravy, M., Bellucci, S., & Marina, N. (2016). An introduction to dynamic optical optimization. Universal Journal of Engineering Science, 4(3), 45-49, SAN JOSE, CA: Horizon Research Publishing. doi:10.13189/ujes.2016.040302
  • Kushner, H. J. (1967). Stochastic stability and control (Technical report). BROWN UNIV PROVIDENCE RI.
  • Lambers, J. V., & Sumner, A. C. (2016). Explorations in numerical analysis. Irvine, CA: University of California at Irvine.
  • Lambert, J. D. (1991). Numerical methods for ordinary differential systems: The initial value problem. New York, NY: John Wiley & Sons, Inc.. ISBN:0-471-92990-5
  • Lamberton, D., & Lapeyre, B. (2011). Introduction to stochastic calculus applied to finance. Boca Raton, Florida: Chapman and Hall/CRC, Taylor & Francis.
  • Lazard, D. (1988). Quantifier elimination: Optimal solution for two classical examples. Journal of Symbolic Computation, 5(1–2), 261–266. doi:10.1016/S0747-7171(88)80015-4
  • Lei, X., Chengjun, W., & Chen, P. (2018). Optimizing parameter of particle damping based on Leidenfrost effect of particle flows. Mechanical Systems and Signal Processing, 104, 60–71. doi:10.1016/j.ymssp.2017.10.037
  • Little, R. J. A., & Rubin, D. B. (2014). Statistical analysis with missing data (Vol. 333). Hoboken, NJ: John Wiley & Sons.
  • Liu, E. H. (2006). Fundamental methods of numerical extrapolation with applications. Mitopencourse- Ware, Massachusetts Institute of Technology, 209(2), 022101.
  • Maharani, M., Salhi, A., & Suharto, R. A. (2018). Enhancing the stability of Lanczos- type algorithms by embedding interpolation and extrapolation for the solution of systems of linear equations. Journal of Mathematical and Fundamental Sciences, 50(2), 148–165. doi:10.5614/j.math.fund.sci.2018.50.2.4
  • Marino, R. (1997). Adaptive control of nonlinear systems: Basic results and applications. Annual Reviews in Control, 21, 55–66. doi:10.1016/S1367-5788(97)00033-3
  • Mason, B. J. (1986). Numerical weather prediction. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 407(1832), 51–60. doi:10.1098/rspa.1986.0083
  • Mona, T., Lagzi, I., & Havasi, Á. (2015). Solving reaction-diffusion and advection problems with Richardson extrapolation (pp. 9). Journal of Chemistry, 2015. doi:10.1155/2015/350362
  • Nickalls, R. W. D. (1993). A new approach to solving the cubic: Cardans solution revealed. The Mathematical Gazette, 77(480), 354–359. doi:10.2307/3619777
  • Oraby, T., Sivaganesan, S., Bowman, J. D., Kincl, L., Richardson, L., McBride, M., … Krewski, D. (2018). Berkson error adjustment and other exposure surrogates in occupational case-control studies, with application to the Canadian INTEROCC study. Journal of Exposure Science and Environmental Epidemiology, 28(3), 251. doi:10.1038/jes.2017.2
  • Ott, E. (2002). Chaos in dynamical systems. Cambridge, UK: Cambridge university press. Online ISBN: 9780511803260. doi:10.1017/CBO9780511803260
  • Ouannas, A., & Odibat, Z. (2015). Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynamics, 81(1–2), 765–771. doi:10.1007/s11071-015-2026-0
  • Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends in Optimization, 1(3), 127–239. doi:10.1561/2400000003
  • Podlubny, I. (1998). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Vol. 198). Cambridge, Massachusetts: Elsevier.
  • Ramirez, M., Scala, E., Haslum, P., & Thiebaux, S. (2017). Numerical integration and dynamic discretization in heuristic search planning over hybrid domains (arXiv preprint arXiv:1703.04232)
  • Rees, E. L. (1922). Graphical discussion of the roots of a quartic equation. The American Mathematical Monthly, 29(2), 51–55. doi:10.1080/00029890.1922.11986100
  • Roos, H.-G., Stynes, M., & Tobiska, L. (2008). Robust numerical methods for singularly perturbed differential equations: Convection-diffusion-reaction and flow problems (Vol. 24). Washington, DC: Taylor & Francis for the Mathematical Association of America.
  • Ruffini, P. (1799). Teoria generale delle equazioni: In cui si dimostra impossibile la soluzione algebraica delle equazioni generali di grad superiore al quarto (Vol. 1). Nella stamperia di ST d’Aquino. Michigan, USA: University of Michigan.
  • Ruppeiner, G. (1995). Riemannian geometry in thermodynamic fluctuation theory. Reviews of Modern Physics, 67(3), 605. doi:10.1103/RevModPhys.67.605
  • Ruyer-Quil, C., & Manneville, P. (2002). Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Physics of Fluids, 14(1), 170–183. doi:10.1063/1.1426103
  • Saitou, K., Izui, K., Nishiwaki, S., & Papalambros, P. (2005). A survey of structural optimization in mechanical product development. Journal of Computing and Information Science in Engineering, 5(3), 214–226. doi:10.1115/1.2013290
  • Samoradnitsky, G. (2017). Stable non-Gaussian random processes: Stochastic models with infinite variance. Abingdon, UK: Routledge.
  • Schmidt, J. W., & Henrici, P. (1966). Discrete variable methods in ordinary differential equations. XI+ 407 S. m. Abb. u. Tab. New York/London 1962. John Wiley & Sons. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 46(5), 327–328. doi:10.1002/zamm.19660460521
  • Skoruppa, N. (2015). Explicit methods in the theory of Jacobi forms of lattice index and over number fields. ICERM Modular Forms and Curves of Low Genus: Computational Aspects.Providence, RI:ICERM Programs.
  • Stoer, J., & Bulirsch, R. (2013). Introduction to numerical analysis (Vol. 12). New York, NY: Springer Science & Business Media.
  • Tiwari, B. N. (2008). Sur les corrections de la géométrie thermodynamique des trous noirs. Editions universitaires europeennes ISBN-13: 978-6131535390, arXiv preprint arXiv:0801.4087.
  • Tiwari, B. N. (2011a). Geometric perspective of entropy function: Embedding, spectrum and convexity. Saarbrucken, Germany: LAP LAMBERT Academic Publishing. ISBN-13, 978–3845431789.
  • Tiwari, B. N. (2011b, September 26). On generalized uncertainty principle (arXiv preprint arXiv:0801.3402). LAP LAMBERT Academic Publishing, ISBN-13: 978-3846515327.
  • Tiwari, B. N., Kuipo, J. K., Bellucci, S., & Marina, N. (2016). On extensions of the optical optimization. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 26(1), 302–313.
  • Wen, C.-K., Wang, C.-J., Jin, S., Wong, K.-K., & Ting, P. (2016, May). Bayes-optimal joint channel-and-data estimation for massive MIMO with low-precision ADCs. IEEE Transactions on Signal Processing, 64(10), 2541–2556. doi:10.1109/TSP.2015.2508786
  • Xie, X.-F., Zhang, W.-J., & Yang, Z.-L. (2002). Dissipative particle swarm optimization. In Evolutionary computation, 2002. CEC’02. proceedings of the 2002 congress, Computer Society, Washington, DC (vol. 2, 1456–1461). IEEE.
  • Xing, T., & Stern, F. (2010). Factors of safety for Richardson extrapolation. Journal of Fluids Engineering, 132(6), 061403. doi:10.1115/1.4001771
  • Zhi-Sheng, Y., & Xie, M. (2015). Stochastic modelling and analysis of degradation for highly reliable products. Applied Stochastic Models in Business and Industry, 31(1), 16–32. doi:10.1002/asmb.2063
  • Zimmermann, H.-J. (1975). Description and optimization of fuzzy systems. International Journal of General System, 2(1), 209–215. doi:10.1080/03081077508960870