2,976
Views
16
CrossRef citations to date
0
Altmetric
Article

New homotopy analysis transform method for solving multidimensional fractional diffusion equations

ORCID Icon &
Pages 27-44 | Received 30 Oct 2018, Accepted 11 Dec 2019, Published online: 31 Dec 2019

References

  • Abbasbandy, S., Shivanian, E., & Vajralu, K. (2011). Mathematical properties of ℏ-curve in the frame work of the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 16, 4268–4275. doi:10.1016/j.cnsns.2011.03.031
  • Alamri, S. Z., Ellahi, R., Shehza, N., & Zeeshan, A. (2019). Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: An application of Stefan blowing. Journal of Molecular Liquids, 273, 292–304. doi:10.1016/j.molliq.2018.10.038
  • Atangana, A., & Baleanu, D. (2016). New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Thermal Science, 20(2), 763–769. doi:10.2298/TSCI160111018A
  • Atangana, A., & Khan, M. A. (2019). Validity of fractal derivative to capturing chaotic attractors. Chaos, Solitons and Fractals, 126, 50–59. doi:10.1016/j.chaos.2019.06.002
  • Atangana, A., & Koca, I. (2016). Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos, Solitons & Fractals, 89, 447–454. doi:10.1016/j.chaos.2016.02.012
  • Bataineh, A. S., Noorani, M. S. M., & Hashim, I. (2007). Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method. Physics Letters A, 371, 72–82. doi:10.1016/j.physleta.2007.05.094
  • Belgacem, F. B. M., & Silambarasan, R. (2012). Advances in the natural transform. In AIP Conference Proceedings, 1493 January 2012 (pp. 106–110). USA: American Institute of Physics.
  • Belgacem, R., Baleanu, D., & Bokhari, A. (2019). Shehu transform and application to caputo-fractional differential equations. International Journal of Analysis and Applications, 17(6), 917–927.
  • Bokhari, A., Baleanu, D., & Belgacem, R. (2019). Application of Shehu transform to Atangana-Baleanu derivatives. Journal of Mathematics and Computer Science, 20(02), 101–107. doi:10.22436/jmcs.020.02.03
  • Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent II. Geophysical Journal International, 13(5), 529–539. doi:10.1111/j.1365-246X.1967.tb02303.x
  • Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 2, 731–785.
  • Chen, W. (2006). Time-space fabric underlying anomalous diffusion. Chaos, Solitons and Fractals, 28(4), 923–929. doi:10.1016/j.chaos.2005.08.199
  • Dehghan, M., Manafian, J., & Saadatmandi, A. (2009). Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numerical Methods for Partial Differential Equations, 1–32. doi:10.1002/num.20460
  • Diethelm, K., & Ford, N. J. (2002). Analysis of fractional differential eqautions. Journal of Mathematical Analysis and Applications, 265, 229–248. doi:10.1006/jmaa.2000.7194
  • Elsaid, A. (2011). Homotopy analysis method for solving a class of fractional partial differential equations. Communications in Nonlinear Science and Numerical Simulation, 16(9), 3655–3664. doi:10.1016/j.cnsns.2010.12.040
  • Elsaid, A., Shamseldeen, S., & Madkour, S. (2016). Semianalytic solution of space-time fractional diffusion equation. International Journal of Differential Equations, 2016(2016), 1–9. doi:10.1155/2016/2371837
  • Fan, J., Yang, X., & Liu, Y. (2019). Fractal calculus for analysis of wool fiber: Mathematical insight of its biomechaninism. Journal of Engineered Fibers and Fabrics, 14, 155892501987220–155892501987224.
  • Feynman, R. (1964). The Brownian movement. The Feynman Lectures of Physics, I, 41–41.
  • Ford, N. J., & Simpson, A. C. (2001). The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Algorithms, 26(4), 333–346.
  • Ganji, D. D., Tari, H., & Jooybari, M. B. (2007). Variational iteration method and homotopy perturbation method for nonlinear evolution equations. Computers & Mathematics with Applications, 54(7–8), 1018–1027. doi:10.1016/j.camwa.2006.12.070
  • He, J. H. (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178(3–4), 257–262. doi:10.1016/S0045-7825(99)00018-3
  • He, J. H. (2011). A new fractal derivative. Thermal Science, 15(1), S145–S147.
  • He, J. H. (2018). Fractal calculus and its geometrical explanation. Results in Physics, 10, 272–276. doi:10.1016/j.rinp.2018.06.011
  • He, J. H., & Ji, F. Y. (2019). Two-scale mathematics and fractional calculus for thermodynamics. Thermal Science, 21(4), 2131–2133. doi:10.2298/TSCI1904131H
  • Jafari, H., & Daftardar-Gejji, V. (2006). Solving linear and nonlinear fractional diffusion and wave equations by adomian decomposition. Journal of Applied Mathematics and Computing., 180, 488–497. doi:10.1016/j.amc.2005.12.031
  • Jafari, H., & Momani, S. (2007). Solving fractional diffusion and wave equations by modified homotopy perturbation method. Physics Letters A, 370(5–6), 388–396. doi:10.1016/j.physleta.2007.05.118
  • Jafari, H., & Seifi, S. (2009). Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Communications in Nonlinear Science and Numerical Simulation, 14(5), 2006–2012. doi:10.1016/j.cnsns.2008.05.008
  • Khan, Z. H., & Khan, W. A. (2008). N-transform-properties and applications. NUST Journal of Engineering Sciences, 1(1), 127–133.
  • Kumar, D., Singh, J., & Kumar, S. (2015). Numerical computation of fractional multidimensional diffusion equations by using a modified homotopy perturbation method. Journal of the Association of Arab Universities for Basic and Applied Sciences, 17(1), 20–26. doi:10.1016/j.jaubas.2014.02.002
  • Liao, S. J. (1992). The proposed homotopy analysis technique for the solution of nonlinear problems (PhD thesis). Shanghai Jiao Tong University, Shanghai.
  • Liao, S. J. (1995). An approximate solution technique not depending on small parameters: A special example. International Journal of Non-Linear Mechanics, 30(3), 371–380. doi:10.1016/0020-7462(94)00054-E
  • Liao, S. J. (2003). Beyond perturbation: Introduction to the homotopy analysis method. Boca Raton, Fla, USA: CRC Press.
  • Liao, S. J. (2010). An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 362, 2003–2016. doi:10.1016/j.cnsns.2009.09.002
  • Losada, J., & Nieto, J. J. (2015). Properties of the new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 2(1), 87–92.
  • Maitama, S., & Abdullahi, I. (2016). A new analytical method for solving linear and nonlinear fractional partial differential equations. Progress in Fractional Differentiation and Applications, 2(4), 247–256. doi:10.18576/pfda/020402
  • Maitama, S., & Zhao, W. (2019a). New Laplace-type integral transform for solving steady heat-transfer problem. Thermal Science, 1–12. arXiv:1905.06157v1[math.GM]. doi:10.2298/TSCI180110160M
  • Maitama, S., & Zhao, W. (2019b). New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations. International Journal of Analysis and Applications, 17(2), 167–190. arXiv:1904.11370v1[math.GM].
  • Markov, A. A. (1960). The theory of algorithms. American Mathematical Society Translations Series, 15, 1–14.
  • Nayfeh, A. H. (2000). Perturbation methods. New York: Wiley.
  • Oldham, K. B., & Spanier, J. (1974). The fractional calculus. New York: Acadamic Press.
  • Podlubny, I. (1999). Fractional differential equations. San Diego: Academic Press.
  • Rawashdeh, M. S., & Obeidat, N. A. (2015). Applying the reduced differential transform method to solve the telegraph and Cahn-Hilliard equations. Thai Journal of Mathematics, 13(1), 153–163.
  • Ray, S. S., & Sahoo, S. (2015). Analytical approximate solutions of Riesz fractional diffusion equation and Riesz fractional advection-dispersion equation involving nonlocal space fractional derivatives. Mathematical Methods in the Applied Sciences, 38(13), 2840–2849. doi:10.1002/mma.3267
  • Samko, S. G., Kilbas, A. A., O.I., & Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Yverdon: Gordon and Breach.
  • Seadawy, A. R. (2017). Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its a solitary wave solutions via mathematical methods. European Physical Journal Plus, 132, 1–11.
  • Seadawy, A. R. (2018). Three-dimensional weakly nonlinear shallow water waves regime and its traveling wave solutions. International Journal of Computational Methods, 15(03), 1850017. doi:10.1142/S0219876218500172
  • Seadawy, A. R., Arshad, M., & Dianchen Lu, D. (2017). Stability analysis of new exact traveling wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems. The European Physical Journal Plus, 132(4), 1–20. doi:10.1140/epjp/i2017-11437-5
  • Singh, B. K., & Srivastava, V. K. (2018). Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM. Royal Society Open Science, 2, 140–511. doi:10.1098/rsos.140511
  • Singh, J., Kumar, D., Baleanu, D., & Rathore, S. (2018). An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation. Applied Mathematics and Computation, 335, 12–24. doi:10.1016/j.amc.2018.04.025
  • Songxin, L., & Jeffrey, D. J. (2009). Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. Communications in Nonlinear Science and Numerical Simulation, 14(12), 4057–4064. doi:10.1016/j.cnsns.2009.02.016
  • Spiegel, M. R. (1965). Theory and problems of Laplace transform. Schaum’s Outline Series. New York, USA: McGraw–Hill.
  • Van Gorder, R. A., & Vajravelu, K. (2008). Analytical and numerical solutions to the Lane-Emden equation. Physics Letters A, 372, 6060–6065. doi:10.1016/j.physleta.2008.08.002
  • Wang, K. L., & He, C. H. (2019). A remark on Wang’s fractal variational principle. Fractals. doi:10.1142/S0218348X19501342
  • Wang, K. L., & Yao, S. W. (2019). Numerical method for fractional Zakharov-Kuznetsov equations with He’s fractional derivative. Thermal Science, 23(4), 2163–2170. doi:10.2298/TSCI1904163W
  • Wang, K. L., Yao, S. W., & Yang, H. W. (2019). A fractal derivative model for snow’s thermal insulation property. Thermal Science, 23(4), 2351–2354. doi:10.2298/TSCI1904351W
  • Wang, Q., Shi, X., He, J.-H., & Li, Z. B. (2018). Fractal calculus and its application to explanation of biomechanism of polar bear hairs. Fractals, 26(06), 1850086. doi:10.1142/S0218348X1850086X
  • Wang, Y. A. N., An, J., & Wang, X. (2019). A variational formulation for anisotropic wave travelling in a porous medium. Fractals, 27(04), 1950047. doi:10.1142/S0218348X19500476
  • Wang, Y., & Deng, Q. G. (2019). Fractal derivative model for Tsunami travelling. Fractals, 27(02), 1950017. doi:10.1142/S0218348X19500178
  • Watugala, G. K. (1998). Sumudu transform–a new integral transform to solve differential equations and control engineering problems. Mathematical Engineering in Industries, 6(1), 319–329.
  • Wazwaz, A. M. (2007). The variational iteration method for rational solutions for K(2,2), Burgers, and cubic Boussinesq equations. The Journal of Computational and Applied Mathematics, 207(1), 18–23. doi:10.1016/j.cam.2006.07.010
  • Yang, X. J. (2016). A new integral transform method for solving steady heat-transfer problem. Thermal Science, 20(suppl. 3), 639–S642. doi:10.2298/TSCI16S3639Y
  • Yavuz, M., & Ozdemir, N. (2018). Numerical inverse Laplace homotopy technique for fractional heat equations. Thermal Science, 22(Suppl. 1), 185–S194. doi:10.2298/TSCI170804285Y
  • Zeeshan, A., Shehzad, N., Ellahi, R., & Alamri, S. Z. (2017). Convective poiseuille flow of Al2O3-EG nanofluid in a porous wavy channel with thermal radiation. Neural Computing and Applications, 30(11), 3371–3382. doi:10.1007/s00521-017-2924-9
  • Zhang, M. F., Liu, Y. Q., & Zhou, X. S. (2015). Efficient homotopy perturbation method for fractional non-linear equations using Sumudu transform. Thermal Science, 19(4), 1167–1171. doi:10.2298/TSCI1504167Z