1,077
Views
4
CrossRef citations to date
0
Altmetric
Article

Reliable iterative methods for 1D Swift–Hohenberg equation

&
Pages 56-66 | Received 01 Jul 2019, Accepted 29 Dec 2019, Published online: 31 Mar 2020

References

  • Abdul Nabi, A. J., & Al-Jawary, M. A. (2018). Analytical and numerical solutions for the linear and nonlinear 1D, 2D and 3D telegraph equations. Journal of Advanced Research in Dynamical & Control Systems, 10(10) (Special Issue), 2090–2105.
  • Adomian, G. (1994). Solving frontier problems of physics: The decomposition method. Boston: Klumer.
  • Adomian, G. (2014). Nonlinear stochastic operator equations. Academic Press INC (LONDON) LTD.
  • Adomian, G., & Rach, R. (1993). Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition. Journal of Mathematical Analysis and Applications, 174(1), 118–137. ‏ doi:10.1006/jmaa.1993.1105
  • Akbarzade, M., & Langari, J. (2011). Application of variational iteration method to partial differential equation systems. International Journal of Mathematical Analysis, 5(18), 863–870. ‏
  • Akyildiz, F. T., Siginer, D. A., Vajravelu, K., & Van Gorder, R. A. (2010). Analytical and numerical results for the Swift–Hohenberg equation. Applied Mathematics and Computation, 216(1), 221–226. doi:10.1016/j.amc.2010.01.041
  • Al-Jawary, M. A. (2016). An efficient iterative method for solving the Fokker–Planck equation. Results in Physics, 6, 985–991. doi:10.1016/j.rinp.2016.11.018
  • Al-Jawary, M. A. (2017). A semi-analytical iterative method for solving nonlinear thin film flow problems. Chaos, Solitons & Fractals, 99, 52–56. doi:10.1016/j.chaos.2017.03.045
  • Al-Jawary, M. A., & Raham, R. K. (2017). A semi-analytical iterative technique for solving chemistry problems. Journal of King Saud University - Science, 29(3), 320–332. doi:10.1016/j.jksus.2016.08.002
  • Al-Jawary, M. A., Adwan, M. I., & Radhi, G. H. (2020). Three iterative methods for solving second order nonlinear ODEs arising in physics. Journal of King Saud University-Science, 32(1), 312–323.
  • Al-Jawary, M. A., Azeez, M. M., & Radhi, G. H. (2018). Analytical and numerical solutions for the nonlinear Burgers and advection–diffusion equations by using a semi-analytical iterative method. Computers & Mathematics with Applications, 76(1), 155–171. doi:10.1016/j.camwa.2018.04.010
  • Al-Jawary, M. A., Radhi, G. H., & Ravnik, J. (2017). Semi-analytical method for solving Fokker-Planck’s equations. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1), 254–262. doi:10.1016/j.jaubas.2017.07.001
  • Al-Jawary, M. A., Radhi, G. H., & Ravnik, J. (2018). Daftardar-Jafari method for solving nonlinear thin film flow problem. Arab Journal of Basic and Applied Sciences, 25(1), 20–27. doi:10.1080/25765299.2018.1449345
  • Anjum, N., & He, J.-H. (2019). Laplace transform: Making the variational iteration method easier. Applied Mathematics Letters, 92, 134–138. doi:10.1016/j.aml.2019.01.016
  • Ateeah, A. K. (2017). Approximate solution for fuzzy differential algebraic equations of fractional order using Adomian decomposition method. Ibn AL-Haitham Journal for Pure and Applied Science, 30(2), 202–213.
  • Bakhtiari, P., Abbasbandy, S., & Van Gorder, R. A. (2018). Reproducing kernel method for the numerical solution of the 1D Swift–Hohenberg equation. Applied Mathematics and Computation, 339, 132–143. doi:10.1016/j.amc.2018.07.006
  • Ban, T., & Cui, R.-Q. (2018). He’s homotopy perturbation method for solving time fractional Swift-Hohenberg equations. Thermal Science, 22(4), 1601–1605. doi:10.2298/TSCI1804601B
  • Bhalekar, S., & Daftardar-Gejji, V. (2008). New iterative method: Application to partial differential equations. Applied Mathematics and Computation, 203(2), 778–783. doi:10.1016/j.amc.2008.05.071
  • Chossat, P., & Faye, G. (2015). Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane. Journal of Dynamics and Differential Equations, 27(3-4), 485–531. doi:10.1007/s10884-013-9308-3
  • Daftardar-Gejji, V., & Bhalekar, S. (2009). Solving nonlinear functional equation using Banach contraction principle. Far East Journal of Applied Mathematics, 34(3), 303–314.
  • Daftardar-Gejji, V., & Bhalekar, S. (2010). Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Computers & Mathematics with Applications, 59(5), 1801–1809. doi:10.1016/j.camwa.2009.08.018
  • Daftardar-Gejji, V., & Jafari, H. (2006). An iterative method for solving nonlinear functional equations. Journal of Mathematical Analysis and Applications, 316(2), 753–763. doi:10.1016/j.jmaa.2005.05.009
  • Deng, S., & Li, X. (2012). Generalized homoclinic solutions for the Swift–Hohenberg equation. Journal of Mathematical Analysis and Applications, 390(1), 15–26. doi:10.1016/j.jmaa.2011.11.074
  • Fonseca, F. (2017). The Solitary Wave Solution of the Swift-Hohenberg equation using He’s semi inverse method. International Mathematical Forum, 12(15), 737–745. doi:10.12988/imf.2017.7758
  • Haragus, M., & Scheel, A. (2007). Interfaces between rolls in the Swift-Hohenberg equation. International Journal of Dynamical Systems and Differential Equations, 1(2), 89. doi:10.1504/IJDSDE.2007.016510
  • He, J. H. (1999). Variational iteration method-a kind of non-linear analytical technique: Some examples. International Journal of Non-Linear Mechanics, 34(4), 699–708. doi:10.1016/S0020-7462(98)00048-1
  • He, J. H. (2007). Variational iteration method—some recent results and new interpretations. Journal of Computational and Applied Mathematics, 207(1), 3–17. doi:10.1016/j.cam.2006.07.009
  • He, J. H. (2019a). A modified Li-He’s variational principle for plasma. International Journal of Numerical Methods for Heat and Fluid Flow‏. doi:10.1108/HFF-06-2019-0523
  • He, J. H. (2019b). Lagrange crisis and generalized variational principle for 3D unsteady flow. International Journal of Numerical Methods for Heat & Fluid Flow.‏ doi:10.1108/HFF-07-2019-0577
  • He, J. H., & Sun, C. (2019). A variational principle for a thin film equation. Journal of Mathematical Chemistry, 57(9), 2075–2081. ‏ doi:10.1007/s10910-019-01063-8
  • Kubstrup, C., Herrero, H., & Pérez-García, C. (1996). Fronts between hexagons and squares in a generalized Swift-Hohenberg equation. Physical Review E, 54(2), 1560–1569. doi:10.1103/PhysRevE.54.1560
  • Kudryashov, N. A., & Ryabov, P. N. (2016). Analytical and numerical solutions of the generalized dispersive Swift–Hohenberg equation. Applied Mathematics and Computation, 286, 171–177. doi:10.1016/j.amc.2016.04.024
  • Mitlif, R. J. (2014). New iterative method for solving nonlinear equations. Baghdad Science Journal, 11(4), 1649–1654. ‏. doi:10.21123/bsj.11.4.1649-1654
  • Odibat, Z. M. (2010). A study on the convergence of variational iteration method. Mathematical and Computer Modelling, 51(9-10), 1181–1192. doi:10.1016/j.mcm.2009.12.034
  • Peletier, L. A., & Rottschäfer, V. (2004). Pattern selection of solutions of the Swift–Hohenberg equation. Physica D: Nonlinear Phenomena, 194(1-2), 95–126. doi:10.1016/j.physd.2004.01.043
  • Peletier, L. A., & Williams, J. F. (2007). Some canonical bifurcations in the Swift–Hohenberg equation. SIAM Journal on Applied Dynamical Systems, 6(1), 208–235. doi:10.1137/050647232
  • Pérez-Moreno, S. S., Chavarría, S. R., & Chavarría, G. R. (2014). Numerical solution of the Swift–Hohenberg equation. In: Klapp J., Medina A. (eds) Experimental and computational fluid mechanics (pp. 409–416). Cham: Springer.
  • Razzaq, E. A. L. A., & Yassein, S. M. (2017). Analytic solutions for integro-differential inequalities using modified Adomian decomposition method. Ibn AL-Haitham Journal for Pure and Applied Science, 30(1), 177–191.
  • Sahib, A. A. A., & Hasan, S. Q. (2014). Convergence of the generalized homotopy perturbation method for solving fractional order integro-differential equations. Baghdad Science Journal, 11(4), 1637–1648. doi:10.21123/bsj.11.4.1637-1648
  • Swift, J., & Hohenberg, P. C. (1977). Hydrodynamic fluctuations at the convective instability. Physical Review A, 15(1), 319–328. doi:10.1103/PhysRevA.15.319
  • Tao, Y., & Zhang, J. (2002). A shooting method for the Swift-Hohenberg equation. Applied Mathematics-A Journal of Chinese Universities, 17(4), 391–403. doi:10.1007/s11766-996-0003-6
  • Temimi, H., & Ansari, A. R. (2011a). A semi-analytical iterative technique for solving nonlinear problems. Computers & Mathematics with Applications, 61(2), 203–210. doi:10.1016/j.camwa.2010.10.042
  • Temimi, H., & Ansari, A. R. (2011b). A new iterative technique for solving nonlinear second order multi-point boundary value problems. Applied Mathematics and Computation, 218(4), 1457–1466. doi:10.1016/j.amc.2011.06.029
  • Temimi, H., & Ansari, A. R. (2015). A computational iterative method for solving nonlinear ordinary differential equations. LMS Journal of Computation and Mathematics, 18(1), 730–753. doi:10.1112/S1461157015000285
  • Wang, H., & Yanti, L. (2011). An efficient numerical method for the quintic complex Swift-Hohenberg equation. Numerical Mathematics: Theory, Methods and Applications, 4(2), 237–254. doi:10.4208/nmtma.2011.42s.7
  • Wazwaz, A. M. (2000). A new algorithm for calculating Adomian polynomials for nonlinear operators. Applied Mathematics and Computation, 111(1), 33–51.‏ doi:10.1016/S0096-3003(99)00063-6
  • Yin, X.-B., Kumar, S., & Kumar, D. (2015). A modified homotopy analysis method for solution of fractional wave equations. Advances in Mechanical Engineering, 7(12), 168781401562033. doi:10.1177/1687814015620330
  • Zhu, Y., Chang, Q., & Wu, S. (2005). A new algorithm for calculating Adomian polynomials. Applied Mathematics and Computation, 169(1), 402–416. ‏ doi:10.1016/j.amc.2004.09.082