24,510
Views
36
CrossRef citations to date
0
Altmetric
Review Article

Water purification using ultrasound waves: application and challenges

&
Pages 194-207 | Received 22 Dec 2019, Accepted 18 Apr 2020, Published online: 18 May 2020

References

  • Ackah, M., Agyemang, O., & Anim, A. K. (2011). Assessment of groundwater quality for drinking and irrigation: The case study of Teiman-Oyarifa Community, Ga East Municipality, Ghana. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(3–4), 186–194.
  • Ambashta, R. D., & Sillanpaa, M. (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3), 38–49. doi:10.1016/j.jhazmat.2010.04.105
  • Asfaram, A., Ghaedi, M., Agarwal, S., Tyagi, I., & Gupta, V. K. (2015). Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: Optimization of parameters using response surface methodology with central composite design. RSC Advances, 5(24), 18438–18450.
  • Ayyildiz, O., Sanik, S., & Ileri, B. (2011). Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency. Ultrasonics Sonochemistry, 18(2), 683–688. doi:10.1016/j.ultsonch.2010.08.008
  • Bello, A. R. C., Angelis, D. F., & Domingos, R. N. (2005). Ultrasound efficiency in relation to sodium hypochlorite and filtration adsorption in microbial elimination in a water treatment plant. Brazilian Archives of Biology and Technology, 48(5), 739–745. doi:10.1590/S1516-89132005000600009
  • Borea, L., Naddeo, V., Shalaby, M. S., Zarra, T., Belgiorno, V., Abdalla, H., & Shaban, A. M. (2018). Wastewater treatment by membrane ultrafiltration enhanced with ultrasound: Effect of membrane flux and ultrasonic frequency. Ultrasonics, 83, 42–47. doi:10.1016/j.ultras.2017.06.013
  • Buchholz, K., Tanis, D., Macomber, S., & Farris, E. (1998). Ballast water treatment technology review. Retrieved from www.NEMW.ORGBALSURV3_US.HTM.
  • Burleson, G. R., Murray, T. M., & Pollard, M. (1975). Inactivation of viruses and bacteria by ozone, with and without sonication. Applied Microbiology, 29(3), 340–344. doi:10.1128/AEM.29.3.340-344.1975
  • Burzio, E., Bersanib, F., Caridia, G. C. A., Vesipaa, R., Ridolfia, L., & Manesa, C. (2020). Water disinfection by orifice-induced hydrodynamic cavitation. Ultrasonics—Sonochemistry, 60, 1–8. doi:10.1016/j.ultsonch.2019.104740
  • Butz, P., & Tauscher, B. (2002). Emerging technologies: Chemical aspects. Food Research International, 35 (2–3), 279–284. doi:10.1016/S0963-9969(01)00197-1
  • Capocelli, M., Prisciandaro, M., Lancia, A., & Musmarra, D. (2013). Modeling of cavitation as an advanced wastewater treatment. Desalination and Water Treatment, 51(7–9), 1609–1614. doi:10.1080/19443994.2012.705094
  • Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. doi:10.1016/j.ultsonch.2016.06.035
  • Chen, D., Weavers, L. K., & Walker, H. W. (2006). Ultrasonic control of ceramic membrane fouling by particles: Effect of ultrasonic factors. Ultrasonics Sonochemistry, 13(5), 379–387. doi:10.1016/j.ultsonch.2005.07.004
  • Cho, J. W., Amy, G., & Pellegrino, J. (1999). Membrane filtration of natural organic matter: Initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membrane. Water Research, 33(11), 2517–2526. doi:10.1016/S0043-1354(98)00498-9
  • Chong, M. N., Jin, B., Chow, C. W.K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027. doi:10.1016/j.watres.2010.02.039
  • Chua, S. Y., AdulLatif, P., & Ibrahim, S. (2009). Effect of ultrasonic irradiation on landfill leachate. Proceedings of Postgraduate Qolloquium Semester 1.
  • Crittenden, J. C., Trussell, R. R. H., & Tchobanglouse, G. (2004). Water treatment principles and design (2nd ed.). Hoboken, NJ: Wiley.
  • Dahi, E. (1976). Physicochemical aspects of disinfection of water by means of ultrasound and ozone. Water Research, 10, 677–684.
  • Deymier, P. A., Vasseur, J. O., Khelif, A., & Raghavan, S. (2001). Second-order sound field during megasonic cleaning of patterned silicon wafers: Application to ridges and trenches. Journal of Applied Physics, 90(8), 4211–4218. doi:10.1063/1.1398595
  • Dhermendra, K., Tiwari, J., & Behari, P. S. (2008). Application of nanoparticles in waste water treatment. World Applied Sciences Journal, 3, 417–433.
  • Doulah, M. S. (1977). Mechanism of disintegration of biological cells in ultrasonic cavitation. Biotechnology and Bioengineering, 19, 649–660. doi:10.1002/bit.260190504
  • Drakopoulou, S., Terzakis, S., Fountoulakis, M. S., Mantzavinos, D., & Manios, T. (2009). Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics Sonochemistry, 16(5), 629–634. doi:10.1016/j.ultsonch.2008.11.011
  • Entezari, M. H., Petrier, C., & Devidal, P. (2003). Sonochemical degradation of phenol in water: A comparison of classical equipment with a new cylindrical reactor. Ultrasonics Sonochemistry, 10(2), 103–108. doi:10.1016/S1350-4177(02)00136-0
  • EPA. (2014). Turbidity. In Water: Monitoring & Assessment. Retrieved from http://water.epa.gov/type/rsl/monitoring/vms55.cfmPerlman.
  • Eskin, G. I., & Eskin, D. G. (2014). Ultrasonic treatment of light alloy melts (2nd ed.). Series: Advances in metallic alloys. Boca Raton: CRC Press.
  • Flynn, H. G. (1964). Physics of acoustic cavitation in liquids. In Mason, W. P. (Ed.), Physical acoustics Part B (Vol. 1, pp. 57–172). New York, USA: Academic Press.
  • Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1–12. doi:10.1016/j.jphotochemrev.2007.12.003
  • Ghaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Agarwal, S., Maity, A., & Gupta, V. K. (2015). Modeling of competitive ultrasonic assisted removal of the dyes—Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chemical Engineering Journal, 268, 28–37. doi:10.1016/j.cej.2014.12.090
  • Gemici, B. T., Karel, F. B., Karaer, F., & Koparal, A. S. (2018). Water disinfection with advanced methods: Successive and hybrid application of antibacterial column with silver, ultrasound and UV radiation. Applied Ecology and Environmental Research, 16(4), 4667–4680. doi:10.15666/aeer/1604_46674680
  • Gogate, P. R. (2007). Application of cavitational reactors for water disinfection: Current status and pathforward. Journal of Environmental Management, 85(4), 801–815. doi:10.1016/j.jenvman.2007.07.001
  • Gogate, P. R., & Pandit, A. B. (2008). Application of cavitational reactors for cell disruption for recovery of intracellular enzymes. Journal of Chemical Technology & Biotechnology, 83(8), 1083–1093. doi:10.1002/jctb.1898
  • Gopal, K., Tripathy, S. S., Bersillon, J. L., & Dubey, S. P. (2007). Chlorination byproducts, theritoxicodynamics and removal from drinking water. Journal of Hazardous Materials, 140(1–2), 1–6. doi:10.1016/j.jhazmat.2006.10.063
  • Guo, Z., & Feng, R. (2008). Ultrasonic irradiation-induced degradation of low-concentration bisphenol A in aqueous solution. Journal of Hazardous Materials, 163(2–3), 855–860. doi:10.1016/j.jhazmat.07.03865
  • Gupta, V. K., JainbImran, C. K., Chandr, A., & Agarwal, S. (2002). Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Research, 36 (10), 2483–2490. doi:10.1016/S0043-1354(01)00474-2
  • Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C, 31(5), 1062–1067. doi:10.1016/j.msec.2011.03.006
  • Gupta, V. K., & Saleh, T. A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview. Environmental Science and Pollution Research, 20(5), 2828–2843. doi:10.1007/s11356-013-1524-1
  • Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environmental Engineering Research, 20(1), 1–18. doi:10.4491/eer.2015.018
  • Hammitt, F. G. (1980). Cavitation and multiphase flow phenomena. USA: McGraw-Hill.
  • Harvey, E. N., & Loomis, L. (1928). High frequency sound waves of small intensity and their biological effects. Nature, 121(3051), 622–624. doi:10.1038/121622a0
  • Hua, I., & Thompson, J. E. (2000). Inactivation of Escherichia coli by sonication at discete ultrasonic frequencies. Water Research, 34(15), 3888–3893. doi:10.1016/S0043-1354(00)00121-4
  • Hulsmans, A., Joris, K., Lambert, N., Rediers, H., Declerck, P., Delaedt, Y., … Liers, S. (2010). Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system. Ultrasonics Sonochemistry, 17(6), 1004–1009. doi:10.1016/j.ultsonch.2009.10.013
  • Joyce, E., Mason, T. J., Phull, S. S., & Lorimer, J. P. (2002). The development and evaluation of ultrasound for the treatment of bacterial suspension. Ultrasonics Sonochemistry, 10, 315–318.
  • Joyce, E., Phull, S. S., Lorimer, J. P., & Mason, T. J. (2003). The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10(6), 315–318. doi:10.1016/S1350-4177(03)00101-9
  • Joyce, E. M., Mason, T. J., & Lorimer, J. P. (2006). Application of UV radiation or electrochemistry in conjunction with power ultrasound for the disinfection of water. International Journal of Environment and Pollution, 27(1/2/3), 222–230. doi:10.1504/IJEP.2006.010465
  • Juang, R. S., & Lin, K. H. (2004). Flux recovery in the ultrafiltration of suspended solutions with ultrasound. Journal of Membrane Science, 243(1–2), 115–124. doi:10.1016/j.memsci.2004.06.013
  • Jyoti, K. K., & Pandit, A. B. (2001). Water disinfection by acoustic and hydrodynamic cavitation. Biochemical Engineering Journal, 7(3), 201–212. doi:10.1016/S1369-703X(00)00128-5
  • Jyoti, K. K., & Pandit, A. B. (2004). Effect of cavitation on chemical disinfection efficiency. Water Research, 38(9), 2249–2219. doi:10.1016/j.watres.2004.02.012
  • Khan, E., Shen, C., & Lin, H. (2006). Use of low-frequency sonication for the production of biodegradable dissolved organic carbon in water. Environmental Engineering Science, 23(2), 367–371. doi:10.1089/ees.2006.23.367
  • Khani, H., Rofouei, M. K., Arab, P., Gupta, V. K., & Vafaei, Z. (2010). Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II). Journal of Hazardous Materials, 183 (1–3), 402–409. doi:10.1016/j.jhazmat.2010.07.039
  • Kobayashi, T., Chai, X., & Fujii, N. (1999). Ultrasound enhanced cross-flow membrane filtration. Separation and Purification Technology, 17(1), 31–40. doi:10.1016/S1383-5866(99)00023-4
  • Kot-Wasik, A., Dabrowska, D., & Namiesnik, J. (2003). Degradacjazwii^zkoworganicznych w srodowisku, NoweHoryzonty i wyzwania w analityceimonitoringusrodowiskowym. Centrum DoskonaloscianalitykiiMonitoringu Srodowiskowego, Gdansk, 700–722.
  • Koval, I., Shevchuk, L., & Starchevsky, V. (2011). Ultrasonic intensification of the natural water and sewage disinfection. Chemical Engineering Transactions, 24, 1315–1320.
  • Kruus, P., Burk, R. C., Entezari, M. H., & Otson, R. (1997). Sonication of aqueous solutions of chlorobenzene. Ultrasonics Sonochemistry, 4(3), 229–233. doi:10.1016/S1350-4177(97)00023-0
  • Kumar, R., Chauhan, A., Goyalb, M. K., Kesri, K. K., & Behari, J. (2015). Screening the effect of ultrasonic wave on effluent treatment. Journal of Bioremediation & Biodegredation, 6 (3), 1. doi:10.4172/2155-6199.1000287
  • Kyllönen, H. M., Pirkonen, P., & Nyström, M. (2005). Membrane filtration enhanced by ultrasound: A review. Desalination, 181(1–3), 319–335. doi:10.1016/j.desal.2005.06.003
  • Laborde, J.-L., Bouyer, C., Caltagirone, J.-P., & Gérard, A. (1998). Acoustic cavitation field prediction at low and high frequency ultrasounds. Ultrasonics, 36(1–5), 581–587. doi:10.1016/S0041-624X(97)00106-6
  • Lamminen, M. O., Walker, H. W., & Weaver, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1–2), 213–223. doi:10.1016/j.memsci.2004.02.031
  • Lauterborn, W., & Ohl, C. D. (1997). Cavitation bubble dynamics. Ultrasonics Sonochemistry, 4(2), 65–75. 1997, doi:10.1016/S1350-4177(97)00009-6
  • Leighton, T. G. (1994). The acoustic bubble. San Diego, USA: Academic Press.
  • Li, J., Ahn, J., Liu, D., Chen, S., Ye, X., & Ding, T. (2016). Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcusaureus by flow cytometry and transmission electron microscopy. Applied and Environmental Microbiology, 82(6), 1828–1837. doi:10.1128/AEM.03080-15
  • Li, J., Sanderson, R. D., & Jacobs, E. P. (2002). Ultrasonic cleaning of nylon microfiltration membrane fouled by Kraft paper mill effluent. Journal of Membrane Science, 205(1–2), 247–257. doi:10.1016/S0376-7388(02)00121-7
  • Liang, H., Nan, J., & He, W. (2009). Algae removal by ultrasonic irradiation-coagulation. Desalination, 239, 191–197.
  • Liu, H. L., & Chiou, Y. R. (2005). Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chemical Engineering Journal, 112(1–3), 173–179. doi:10.1016/j.cej.2005.07.012
  • Manousaki, E., Psillakis, E., Kalogerakis, N., & Mantzavinos, D. (2004). Degradation of sodium dodecylbenzenesulfonate in water by ultrasonic irradiation. Water Research, 38(17), 3751–3759. doi:10.1016/j.watres.2004.06.002
  • Manson, T., & Lorimer, J. (2002). App Sonochemistry: Uses in chemistry and processing. Weinheim: Wiley-VCH.
  • Mason, T. J., Cobley, A. J., Graves, J. E., & Morgan, D. (2011). New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrasonics Sonochemistry, 18(1), 226–230. doi:10.1016/j.ultsonch.2010.05.008
  • Mason, T. J., Joyce, E., Phull, S. S., & Lorimer, J. P. (2003). Potential uses of ultrasound in the biological decontamination of water. Ultrasonics Sonochemistry, 10(6), 319–323. doi:10.1016/S1350-4177(03)00102-0
  • Matsumoto, Y., Miwa, T., Nakao, S. I., & Kimura, S. (1996). Improvement of membrane permeation performance by ultrasonic microfiltration. Journal of Chemical Engineering of Japan, 29(4), 561–567. doi:10.1252/jcej.29.561
  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2010). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science, 344(2), 497–507. doi:10.1016/j.jcis.2010.01.007
  • Muthukumaran, S., Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Steven, G. W., & Grieser, F. (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 39(1–2), 99–107. doi:10.1016/j.seppur.2003.12.013
  • Mutiarani, M., & Trisnobudi, A. (2009). Ultrasonic irradiation in decreasing water turbidity.
  • Naffrechoux, E., Chanoux, S., Petrier, C., & Suptil, J. (2000). Sonochemical and photochemical oxidation of organic matter. Ultrasonics Sonochemistry, 7(4), 255–259. doi:10.1016/S1350-4177(00)00054-7
  • Nakanishi, M., Mukai, S., Kimata, I., Iseki, M., & Maeda, Y. (2001). Inactivation of Cryptosporidium parvumOocysts in drinking water by high-intensity ultrasonic waves. In Proceedings of the American Water Works Association, 2001 Annual Conference (pp. 17–21). Washington DC.
  • Nakatsuka, S., Nakate, I., & Miyano, T. (1996). Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106(1–3), 55–61. doi:10.1016/S0011-9164(96)00092-6
  • Naseri, S., Vaezi, F., Mahvi, A. H., Nabizadeh, R., & Haddadi, S. (2006). Determination of the ultrasonic effectiveness in advanced wastewater treatment. Iranian Journal of Environmental Health Science & Engineering, 3, 109–116.
  • Ng, K. K., Lin, C. F., Lateef, S. K., Panchangam, S. C., Hong, P. K. A., & Yang, P. Y. (2010). The effect of soluble microbial products in a fixed carrier biological system. Separation and Purification Technology, 72(1), 98–104.
  • Nikolopoulos, A. N., Igglessi-Markopoulou, O., & Papayannakos, N. (2006). Ultrasound assisted catalytic wet peroxide oxidation of phenol: Kinetics and intraparticle diffusion effects. Ultrasonics Sonochemistry, 13(1), 92–97. doi:10.1016/j.ultsonch.2004.10.001
  • Nilsun, H. I., & Belen, R. (2001). Aqueous phase disinfection with power ultrasound. Process Kinetics and Effect of Solid Catalysts Environmental Science & Technology, 35 (9), 1885–1888. doi:10.1021/es000157
  • Noltingk, B. E., & Neppiras, E. A. (1950). Cavitation produced by ultrasonics. Proceedings of the Physical Society. Section B, 63(9), 674–685. doi:10.1088/0370-1301/63/9/305
  • Oturan, M. A., Sirés, I., Oturan, N., Pérocheau, S., Laborde, J. L., & Trévin, S. (2008). Sonoelectro- Fenton process: A novel hybrid techniquefor the destruction of organic pollutants in water, Journal of Electroanalytical Chemistry, 624(1–2), 329–332.
  • Ozonek, J. (2012). Application of hydrodynamic cavitation in environmental engineering. London: Taylor & Francis Group.
  • Paleologou, A., Marakas, H., Xekoukoulotakis, N. P., Moya, A., Vergara, Y., Kalogerakis, N., … Mantzavinosa, D. (2007). Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catalysis Today, 129(1–2), 136–142. doi:10.1016/j.cattod.2007.06.059
  • Petrier, C., Jeunet, A., Luche, J. L., & Reverdy, G. (1992). Unexpected frequency effects on the rate of oxidative processes induced by ultrasound. Journal of the American Chemical Society, 114(8), 3148–3150. doi:10.1021/ja00034a077
  • Petrier, C., Jiang, Y., & Lamy, M. F. (1998). Ultrasound and environment: Sonochemical destruction of chloroaromatic derivatives. Environmental Science & Technology, 32(9), 1316–1318. doi:10.1021/es970662x
  • Phull, S. S., Newman, A. P., Lorimer, J. P., Pollet, B., & Mason, T. J. (1997). The development and evaluation of ultrasound in the biocidal treatment of water. Ultrasonics Sonochemistry, 4(2), 157–164. doi:10.1016/S1350-4177(97)00029-1
  • Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D., & Surampalli, R. Y. (2011). Ultrasonic pretreatment of sludge: A review. Ultrasonics Sonochemistry, 18(1), 1–18. doi:10.1016/j.ultsonch.2010.02.014
  • Pozos, N., Scow, K., Wuertz, S., (2004). UV disinfection in a model distribution system: Biofilm growth and microbial community. Water Resources, 38, 3083–3091 10.
  • Psillakis, E., Goula, G., Kalogerakis, N., & Mantzavinos, D. (2004). Degradation of polycyclicaromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. Journal of Hazardous Materials, 108, 95102.
  • Rajendran, S., Khan, M. M., Gracia, F., Qin, J., Gupta, V. K., & Arumainathan, S. (2016). Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Scientific Reports, 6(1), 31641. doi:10.1038/srep31641
  • Saleh, T. A., & Gupta, V. K. (2011). Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. Journal of Colloid and Interface Science, 362 (2), 337–344. doi:10.1016/j.jcis.2011.06.081
  • Saleh, T. A., & Gupta, V. K. (2012a). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxid. Journal of Colloid and Interface Science, 371(1), 101–106. doi:10.1016/j.jcis.2011.12.038
  • Saleh, T. A., & Gupta, V. K. (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Advances in Colloid and Interface Science, 211, 93–101. doi:10.1016/j.cis.2014.06.006
  • Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Narayanan, V., & Stephen, A. (2013). photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C, 33(1), 91–98. doi:10.1016/j.msec.2012.08.011
  • Saravanan, R., Gupta, V. K., Mosquera, E., & Gracia, F. (2014). Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. Journal of Molecular Liquids, 198, 409–412. doi:10.1016/j.molliq.2014.07.030
  • Saravanan, R., Mansoob Khan, M., Gupta, V. K., Mosquera, E., Gracia, F., Narayanan, V., & Stephen, A. (2015a). ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. Journal of Colloid and Interface Science, 452, 126–133. doi:10.1016/j.jcis.2015.04.035
  • Saravanan, R., Khan, M. M., Gupta, V. K., Mosquera, E., Gracia, F., Narayanan, V., & Stephen, A. (2015b). ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Advances, 5(44), 34645–34651. doi:10.1039/C5RA02557E
  • Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029–1033. doi:10.1016/j.molliq.2016.06.074
  • Schlager, K. J., & Gorski, S. H. (2004). Electronic water disinfection apparatus.US Patents. N° 6780306.
  • Simon, A., Gondrexon, N., Taha, S., Cabon, J., & Dorange, G. (2000). Low frequency ultrasound to improve dead-end ultrafiltration performance. Separation Science and Technology, 35(16), 2619–2637. doi:10.1081/SS-100102359
  • Stefan, A., & Balan, G. (2011). The chemistry of the raw water treated by air-jet ultrasound generator. Rev. Roum. Sci. Tech. Mec. Appl, 56(1), 85–92.
  • Suslick, K. S. (1994). The chemistry of ultrasound (pp. 138–155). Chicago: Encyclopedia Britannica.
  • Suslick, K. S., Hammerton, D. A., & Cline, R. E. J. (1986). The sonochemical hot-spot. Journal of the American Chemical Society, 108(18), 5641–5642. doi:10.1021/ja00278a055
  • Tansel, B. (2008). New technologies for water and wastewater treatment: A survey of recent patents. Recent Patents on Chemical Engineering, 1(1), 17–26. doi:10.2174/2211334710801010017
  • Thacker, J. (1973). An approach to the mechanism of killing of cells in suspension by ultrasound. Biochimica et Biophysica Acta (BBA)—General Subjects, 304(2), 240–248. doi:10.1016/0304-4165(73)90241-9
  • Thornycrof, J., & Sidney, B. (1895). Torpedo boat destroyers. ProcInst Civil Engineers, 122, 51.
  • Tiwari, R. N. (2011). Assessment of groundwater quality and pollution potential of Jawa Block Rewa District, Madhya Pradesh, India. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(3–4), 202–212.
  • Torres, R. A., Pétrier, C., Combet, E., Carrier, M., & Pulgarin, C. (2008). Ultrasonic cavitation applied to the treatment of bisphenol A. Ultrasonics Sonochemistry, 15(4), 605–611. doi:10.1016/j.ultsonch.2007.07.003
  • Tzanakis, I., Lebon, G. S. B., Eskin, D. G., & Pericleous, K. A. (2017). Characterizing the cavitation development and acoustic spectrum in various liquids. Ultrasonics Sonochemistry, 34, 651–662. doi:10.1016/j.ultsonch.2016.06.034
  • U.S. Environmental Protection Agency (U.S. EPA). (1999). Office of Water. UV Irradiation. Alternative disinfectants and oxidants guidance manual; EPA 815-R-99-014.
  • Von Gunten, U. (2003). Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide and chlorine. Water Research, 37(7), 1469–1487. doi:10.1016/S0043-1354(02)00458-X
  • Warade, A. R., Gaikwad, R. W., Sapkal, R. S., & Sapkal, V. S. (2016). Review on wastewater treatment by hydrodynamic cavitation. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 10 (12), 67–72.
  • Winward, G. P., Avery, L. M., Stephenson, T., & Jefferson, B. (2008). Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Research, 42(1–2), 483–491. doi:10.1016/j.watres.2007.07.042
  • Wong, K. Y. K. (2002). Ultrasound as a sole or synergistic disinfectant in drinking water (Master Thesis). Worcester Polytechnic Institute, USA.
  • Yuk, Y. J., & Youm, K. H. (2003). Enhancement of ultrafiltration performance using ultrasound. Memburein, 13, 283–290.
  • Zhang, G., Zhang, P., & Fan, M. (2009). Ultrasound-enhanced coagulation for Microcystisaeruginosaremoval. Ultrasonics Sonochemistry, 16(3), 334–338. doi:10.1016/j.ultsonch.2008.10.014
  • Zhang, W. J., Jiang, F. B., & Ou, J. F. (2011). Global pesticide consumption and pollution: With China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125–144.
  • Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., & Cai, Z. (2019). Recent advances and applications of semiconductor photocatalytic technology. Applied Sciences, 9(12), 2489. doi:10.3390/app9122489
  • Zhou, Q., Lau, S., Wu, D., & Shung, K. K. (2011). Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Progress in Materials Science, 56(2), 139–174. doi:10.1016/j.pmatsci.2010.09.001
  • Zou, H., & Tang, H. (2019). Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. Water, 11(2), 258. doi:10.3390/w11020258