41,220
Views
193
CrossRef citations to date
0
Altmetric
Review Article

Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review

, , , , , , & ORCID Icon show all
Pages 208-238 | Received 23 Sep 2019, Accepted 02 May 2020, Published online: 19 May 2020

References

  • Abbas, A.F., & Ahmed, M.J. (2016). Mesoporous activated carbon from date stones (Phoenix dactylifera L.) by one-step microwave assisted K2CO3 pyrolysis. Journal of Water Process Engineering., 9, 201–207. doi:10.1016/j.jwpe.2016.01.004
  • Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., Dawood, M., & Azad, A.K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602–627. doi:10.1016/j.enconman.2018.03.088
  • Abu Bakar, M. (2013). Catalytic intermediate pyrolysis of Brunei rice husk for bio-oil production. PhD thesis, Aston University, United Kingdom.
  • Afif, A., Radenahmad, N., Cheok, Q., Shams, S., Kim, J.H., & Azad, A.K. (2016). Ammonia-fed fuel cells: A comprehensive review. Renewable and Sustainable Energy Reviews, 60, 822–835. doi:10.1016/j.rser.2016.01.120
  • Afif, A., Rahman, S.M., Tasfiah Azad, A., Zaini, J., Islan, M.A., & Azad, A.K. (2019). Advanced materials and technologies for hybrid supercapacitors for energy storage – a review. Journal of Energy Storage, 25, 100852. doi:10.1016/j.est.2019.100852
  • Afroze, S., Binti Haji Bakar, A.N., Reza, M.S., Salam, M.A., & Azad, A.K. (2018). Polyvinylidene fluoride (PVDF) piezoelectric energy harvesting from rotary retracting mechanism: Imitating forearm motion. IET Conference Publications, Institution of Engineering and Technology, London, United Kingdom, 4pp. doi:10.1049/cp.2018.1591
  • Afroze, S., Karim, A.H., Cheok, Q., Eriksson, S., & Azad, A.K. (2019). Latest development of double perovskite electrode materials for solid oxide fuel cells: A review. Frontiers in Energy, 13(4), 770–797. doi:10.1007/s11708-019-0651-x
  • Afroze, S., Torino, N., Henry, P.F., Reza, M.S., Cheok, Q., & Azad, A.K. (2020a). Neutron and X-ray powder diffraction data to determine the structural properties of novel layered perovskite PrSrMn2O5 + δ. Data in Brief, 29, 105173. doi:10.1016/j.dib.2020.105173
  • Afroze, S., Torino, N., Henry, P.F., Sumon Reza, M., Cheok, Q., & Azad, A.K. (2020b). Insight of novel layered perovskite PrSrMn2O5+δ: A neutron powder diffraction study. Materials Letters., 261, 127126. doi:10.1016/j.matlet.2019.127126
  • Ahmad, T., & Danish, M. (2018). Prospects of banana waste utilization in wastewater treatment: A review. Journal of Environment Management, 206, 330–348. doi:10.1016/j.jenvman.2017.10.061
  • Ahmed, A., Abu Bakar, M.S., Azad, A.K., Sukri, R.S., & Mahlia, T.M.I. (2018a). Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review. Renewable and Sustainable Energy Reviews, 82, 3060–3076. doi:10.1016/j.rser.2017.10.032
  • Ahmed, A., Abu Bakar, M.S., Azad, A.K., Sukri, R.S., & Phusunti, N. (2018b). Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Conversion and Management, 176, 393–408. doi:10.1016/j.enconman.2018.09.041
  • Ahmed, A., Hidayat, S., Abu Bakar, M.S., Azad, A.K., Sukri, R.S., & Phusunti, N. (2018c). Thermochemical characterisation of Acacia auriculiformis tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource. Biofuels, 7269, 1–12. doi:10.1080/17597269.2018.1442663
  • Ahmed, M.J. (2016a). Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments: Review. Process Safety and Environment Protection., 102, 168–182. doi:10.1016/j.psep.2016.03.010
  • Ahmed, M.J. (2016b). Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. Journal of Environmental Chemical Engineering, 4(1), 89–99. doi:10.1016/j.jece.2015.10.027
  • Ahmed, M.J. (2017). Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review. Journal of Environmental Management, 190, 274–282. doi:10.1016/j.jenvman.2016.12.073
  • Ahmed, M.J., & Theydan, S.K. (2012). Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones. Ecotoxicology and Environmental Safety, 84, 39–45. doi:10.1016/j.ecoenv.2012.06.019
  • Ahmed, S., Parvaz, M., Johari, R., & Rafat, M. (2018). Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode. Materials Research Express, 5(4), 045601. doi:10.1088/2053-1591/aab924
  • Ahmed, T.F., Sushil, M., & Krishna, M. (2012). Impact of dye industrial effluent on physicochemical characteristics of Kshipra River, Ujjain City, India. International Research Journal of Environmental Science, 1, 41–45.
  • Alagumuthu, G., & Rajan, M. (2010). Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon. Chemical Engineering Journal and the Biochemical Engineering Journal, 158(3), 451–457. doi:10.1016/j.cej.2010.01.017
  • Alhamed, Y.A. (2009). Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from dates' stones. Journal of Hazardous Materials, 170(2/3), 763–770. doi:10.1016/j.jhazmat.2009.05.002
  • Alhinai, M., Azad, A.K., Bakar, M.S.A., & Phusunti, N. (2018). Characterisation and Thermochemical Conversion of Rice Husk for Biochar Production. International Journal of Renewable Energy Sources, 8, 1648–1656.
  • Alslaibi, T.M., Abustan, I., Ahmad, M.A., & Foul, A.A. (2013). A review: Production of activated carbon from agricultural byproducts via conventional and microwave heating. Journal of Chemical Technology & Biotechnology, 88(7), 1183–1190. doi:10.1002/jctb.4028
  • Altıntıg, E., Onaran, M., Sarı, A., Altundag, H., & Tüzen, M. (2018). Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Materials Chemistry and Physics., 220, 313–321. doi:10.1016/j.matchemphys.2018.05.077
  • Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., & Olazar, M. (2015). Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons. Industrial & Engineering Chemistry Research, 54(29), 7241–7250. doi:10.1021/acs.iecr.5b01589
  • Amin, M.T., & Alazba, A.A. (2017). Comparative study of the absorptive potential of raw and activated carbon Acacia nilotica for Reactive Black 5 dye. Environ. Earth Sci, 76, 581. 10.1007/s12665-017-6927-8.
  • Anastopoulos, I., & Kyzas, G.Z. (2014). Agricultural peels for dye adsorption: A review of recent literature. Journal of Molecular Liquids., 200, 381–389. doi:10.1016/j.molliq.2014.11.006
  • Anfar, Z., Zbair, M., Ahsaine, H., Ezahri, M., & Alem, N. (2018). Well-designed WO3/Activated carbon composite for rhodamin. removal: Synthesis, characterization, and modeling using response surface methodology. Fullerenes Nanotubes and Carbon Nanostructures, 26(6), 389–397. doi:10.1080/1536383X.2018.1440386
  • Angın, D., Altintig, E., & Köse, T.E. (2013). Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology, 148, 542–549. doi:10.1016/j.biortech.2013.08.164
  • Ao, W., Fu, J., Mao, X., Kang, Q., Ran, C., Liu, Y., … Dai, J. (2018). Microwave assisted preparation of activated carbon from biomass: A review. Renewable and Sustainable Energy Reviews, 92, 958–979. doi:10.1016/j.rser.2018.04.051
  • Arami-Niya, A., Daud, W.M.A.W., & Mjalli, F.S. (2010). Production of palm shell-based activated carbon with more homogeniouse pore size distribution. Journal of Applied Sciences, 10(24), 3361–3366. doi:10.3923/jas.2010.3361.3366
  • Arami-Niya, A., Daud, W.M.A.W., & Mjalli, F.S. (2011). Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chemical Engineering Research and Design., 89(6), 657–664. doi:10.1016/j.cherd.2010.10.003
  • Arami-Niya, A., Wan Daud, W.M.A., S. Mjalli, F., Abnisa, F., & Shafeeyan, M.S. (2012). Production of microporous palm shell based activated carbon for methane adsorption: Modeling and optimization using response surface methodology. Chemical Engineering Research and Design., 90(6), 776–784. doi:10.1016/j.cherd.2011.10.001
  • Attari, M., Bukhari, S.S., Kazemian, H., & Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering., 5(1), 391–399. doi:10.1016/j.jece.2016.12.014
  • Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Reviews., 4(1), 37–59. doi:10.1002/cben.201600010
  • Bai, B.C., Cho, S., Yu, H.R., Yi, K.B., Kim, K.D., & Lee, Y.S. (2013). Effects of aminated carbon molecular sieves on breakthrough curve behavior in CO2/CH4 separation. Journal of Industrial and Engineering Chemistry., 19(3), 776–783. doi:10.1016/j.jiec.2012.10.016
  • Balasundram, V., Ibrahim, N., Kasmani, R.M., Hamid, M.K.A., Isha, R., Hasbullah, H., & Ali, R.R. (2017). Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. Journal of Cleaner Production, 167, 218–228. doi:10.1016/j.jclepro.2017.08.173
  • Bansal, R.C., Aggarwal, D., Goyal, M., & Kaistha, B.C. (2002). Influence of carbon-oxygen surface groups on the adsorption of phenol by activated carbons. Indian Journal of Chemical Technology., 9, 290–296.
  • Beltrame, K.K., Cazetta, A.L., de Souza, P.S.C., Spessato, L., Silva, T.L., & Almeida, V.C. (2018). Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicology and Environmental Safety, 147, 64–71. doi:10.1016/j.ecoenv.2017.08.034
  • Benedetti, V., Patuzzi, F., & Baratieri, M. (2018). Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Applied Energy., 227, 92–99. doi:10.1016/j.apenergy.2017.08.076
  • Bernhardt, A., & Gysi, N. (2016). World’s Wost Pollution Problems: The Toxics Beneath Our Feet. Fabrikstrasse 17 8005 Zurich, Switzerland.
  • Bhagawan, D., Poodari, S., Ravi Kumar, G., Golla, S., Anand, C., Banda, K.S., … Vidyavathi, S. (2015). Reactivation and recycling of spent carbon using solvent desorption followed by thermal treatment (TR). Journal of Material Cycles and Waste Management, 17(1), 185–193. doi:10.1007/s10163-014-0237-y
  • Bian, Y., Yuan, Q., Zhu, G., Ren, B., Hursthouse, A., & Zhang, P. (2018). Recycling of Waste Sludge: Preparation and Application of Sludge-Based Activated Carbon. International Journal of Polymeric Science., 2018, 1–17. doi:10.1155/2018/8320609
  • Bolisetty, S., Peydayesh, M., & Mezzenga, R. (2019). Sustainable technologies for water purification from heavy metals: Review and analysis. Chemical Society Reviews, 48(2), 463–487. doi:10.1039/c8cs00493e
  • Boudrahem, N., Delpeux-Ouldriane, S., Khenniche, L., Boudrahem, F., Aissani-Benissad, F., & Gineys, M. (2017). Single and mixture adsorption of clofibric acid, tetracycline and paracetamol onto Activated carbon developed from cotton cloth residue. Process Safety and Environment Protection., 111, 544–559. doi:10.1016/j.psep.2017.08.025
  • Briones, R., Serrano, L., Younes, R., Ben, Mondragon, I., & Labidi, J. (2011). Polyol production by chemical modification of date seeds. Industrial Crops and Products., 34(1), 1035–1040. doi:10.1016/j.indcrop.2011.03.012
  • Burakov, A.E., Galunin, E. V., Burakova, I. V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., & Gupta, V.K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702–712. doi:10.1016/j.ecoenv.2017.11.034
  • Caglar, B., Afsin, B., Koksal, E., Tabak, A., & Eren, E. (2013). Characterization of unye bentonite after treatment with sulfuric acid. Química Nova, 36(7), 955–959. doi:10.1590/S0100-40422013000700006
  • Cao, Q., Xie, K.C., Lv, Y.K., & Bao, W.R. (2006). Process effects on activated carbon with large specific surface area from corn cob. Bioresource Technology, 97(1), 110–115. doi:10.1016/j.biortech.2005.02.026
  • Carbon, Activated - Materials Handled - Flexicon Corporation [www Document], n.d. URL https://www.flexicon.com/Materials-Handled/Carbon-Activated.html. (accessed 12.3.19).
  • Chayid, M.A., & Ahmed, M.J. (2015). Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies. Journal of Environmental Chemical Engineering., 3(3), 1592–1601. doi:10.1016/j.jece.2015.05.021
  • Chowdhury, Z.Z., Abd Hamid, S.B., Das, R., Hasan, M.R., Zain, S.M., Khalid, K., & Uddin, M.N. (2013). Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources, 8(4), 6523–6555. doi:10.15376/biores.8.4.6523-6555
  • Creamer, A.E., & Gao, B. (2016). Carbon-based adsorbents for postcombustion CO2 capture: A critical review. Environmental Science & Technology, 50(14), 7276–7289. doi:10.1021/acs.est.6b00627
  • Danish, M., & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1–21. doi:10.1016/j.rser.2018.02.003
  • Danish, M., Hashim, R., Ibrahim, M.N.M., & Sulaiman, O. (2013a). Characterization of physically activated Acacia mangium wood-based carbon for the removal of methyl orange dye. BioResources, 8(3), 4323–4339. doi:10.15376/biores.8.3.4323-4339
  • Danish, M., Hashim, R., Ibrahim, M.N.M., Rafatullah, M., Ahmad, T., & Sulaiman, O. (2011). Characterization of Acacia mangium wood based activated carbons prepared in the presence of basic activating agents. BioResources, 8(3), 3019–3033.
  • Danish, M., Hashim, R., Ibrahim, M.N.M.N.M., & Sulaiman, O. (2013b). Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood. Journal of Analytical and Applied Pyrolysis., 104, 418–425. doi:10.1016/j.jaap.2013.06.003
  • Danish, M., Hashim, R., Ibrahim, M.N.M.N.M.M., Rafatullah, M., & Sulaiman, O. (2012). Surface characterization and comparative adsorption properties of Cr(VI) on pyrolysed adsorbents of Acacia mangium wood and Phoenix dactylifera L. stone carbon. Journal of Analytical and Applied Pyrolysis., 97, 19–28. doi:10.1016/j.jaap.2012.06.001
  • Danish, M., Hashim, R., Mohamad Ibrahim, M.N., & Sulaiman, O. (2014). Response surface methodology approach for methyl orange dye removal using optimized Acacia mangium wood activated carbon. Wood Science and Technology, 48(5), 1085–1105. doi:10.1007/s00226-014-0659-7
  • Dass, B., & Jha, P. (2015). Batch Adsorption of Phenol by Improved Activated Acacia nilotica branches char: Equilibrium, Kinetic and Thermodynamic studies. Artic. Int. J. ChemTech Res, 8, 269–279.
  • Deng, H., Li, G., Yang, H., Tang, J., & Tang, J. (2010). Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal and the Biochemical Engineering Journal., 163(3), 373–381. doi:10.1016/j.cej.2010.08.019
  • Derdour, K., Bouchelta, C., Khorief Naser-Eddine, A., Medjram, M.S., & Magri, P. (2018). Removal of Cr(VI) from aqueous solution using activated carbon supported iron catalysts as efficient adsorbent. World Journal of Engineering, 15, 3–13. 10.1108/WJE-06-2017-0132.
  • Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695–716. doi:10.1016/j.renene.2017.04.035
  • Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 85(4), 833–846. doi:10.1016/j.jenvman.2007.07.031
  • Din, M. I., Ashraf, S., & Intisar, A. (2017). Comparative study of different activation treatments for the preparation of activated carbon: A mini-review. Science Progress, 100(3), 299–312. doi:10.3184/003685017X14967570531606
  • Dong, L., Liu, W., Yu, Y., Hou, L., Gu, P., & Chen, G. (2019). Preparation, characterization, and application of macroporous activated carbon (MAC) suitable for the BAC water treatment process. The Science of the Total Environment, 647, 1359–1367. doi:10.1016/j.scitotenv.2018.07.280
  • El Bakouri, H., Usero, J., Morillo, J., Rojas, R., & Ouassini, A. (2009). Drin pesticides removal from aqueous solutions using acid-treated date stones. Bioresource Technology, 100(10), 2676–2684. doi:10.1016/j.biortech.2008.12.051
  • El Gamal, M., Mousa, H.A., El-Naas, M.H., Zacharia, R., & Judd, S. (2018). Bio-regeneration of activated carbon: A comprehensive review. Separation and Purification Technology., 197, 345–359. doi:10.1016/j.seppur.2018.01.015
  • El-Naggar, A., Lee, S.S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A.K., … Ok, Y.S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554. doi:10.1016/j.geoderma.2018.09.034
  • Elsayed, A.M., Askalany, A.A., Shea, A.D., Dakkama, H.J., Mahmoud, S., Al-Dadah, R., & Kaialy, W. (2017). A state of the art of required techniques for employing activated carbon in renewable energy powered adsorption applications. Renewable and Sustainable Energy Reviews, 79, 503–519. doi:10.1016/j.rser.2017.05.172
  • Elsayed, Y., Seredych, M., Dallas, A., & Bandosz, T.J. (2009). Desulfurization of air at high and low H2S concentrations. Chemical Engineering Journal and the Biochemical Engineering Journal, 155(3), 594–602. doi:10.1016/j.cej.2009.08.010
  • Eslami, A., Borghei, S.M.S.M., Rashidi, A., & Takdastan, A. (2018). Preparation of activated carbon dots from sugarcane bagasse for naphthalene removal from aqueous solutions. Separation Science and Technology., 53(16), 2536–2549. doi:10.1080/01496395.2018.1462832
  • Fan, J., Zhang, J., Zhang, C., Ren, L., & Shi, Q. (2011). Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife. Desalination, 267(2/3), 139–146. doi:10.1016/j.desal.2010.09.016
  • Fu, X., Yang, H., Lu, G., Tu, Y., & Wu, J. (2015). Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution. Materials Science in Semiconductor Processing, 39, 362–370. doi:10.1016/j.mssp.2015.05.034
  • González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82, 1393–1414. doi:10.1016/j.rser.2017.04.117
  • Gupta, T.B., & Lataye, D.H. (2017). Adsorption of Indigo Carmine Dye onto Acacia Nilotica (Babool) Sawdust Activated Carbon. Journal of Hazardous, Toxic, and Radioactive Waste, 21(4), 04017013. doi:10.1061/(ASCE)HZ.2153-5515.0000365
  • Hammani, H., Boumya, W., Laghrib, F., Farahi, A., Lahrich, S., Aboulkas, A., & El Mhammedi, M.A. (2017). Electrocatalytic effect of NiO supported onto activated carbon in oxidizing phenol at graphite electrode: Application in tap water and olive oil samples. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1), 26–33. doi:10.1016/j.jaubas.2017.06.006
  • Hidayat, S., Abu Bakar, M.S., Yang, Y., Phusunti, N., & Bridgwater, A.V. (2018). Characterisation and Py-GC/MS analysis of Imperata Cylindrica as potential biomass for bio-oil production in Brunei Darussalam. Journal of Analytical and Applied Pyrolysis., 134, 510–519. doi:10.1016/j.jaap.2018.07.018
  • Hoseinzadeh Hesas, R., Wan Daud, W.M.A., Sahu, J.N., & Arami-Niya, A. (2013). The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. Journal of Analytical and Applied Pyrolysis., 100, 1–11. doi:10.1016/j.jaap.2012.12.019
  • Hossain, M.A., Shams, S., Amin, M., Reza, M.S., & Chowdhury, T.U. (2019). Perception and barriers to implementation of intensive and extensive green roofs in Dhaka, Bangladesh. Buildings, 9(4), 79. doi:10.3390/buildings9040079
  • Huang, T., Zhou, R., Cui, J., Zhang, J., Tang, X., Chen, S., … Liu, H. (2018). Fast and cost-effective preparation of antimicrobial zinc oxide embedded in activated carbon composite for water purification applications. Materials Chemistry and Physics, 206, 124–129. doi:10.1016/j.matchemphys.2017.11.044
  • Ioannidou, O.A., Zabaniotou, A.A., Stavropoulos, G.G., Islam, M.A., & Albanis, T.A. (2010). Preparation of activated carbons from agricultural residues for pesticide adsorption. Chemosphere, 80(11), 1328–1336. doi:10.1016/j.chemosphere.2010.06.044
  • Islam, M.A., Tan, I.A.W., Benhouria, A., Asif, M., & Hameed, B.H. (2015). Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chemical Engineering Journal and the Biochemical Engineering Journal, 270, 187–195. doi:10.1016/j.cej.2015.01.058
  • Islam, S.N., Mohamad, S.M.B.H., & Azad, A.K. (2019). Acacia spp.: Invasive trees along the Brunei Coast, Borneo. In: C. Makowski & C.W. Finkl (Eds.), Impacts of Invasive Species on Coastal Environments: Coasts in Crisis (pp. 455–476). Cham, Switzerland: Springer International Publishing AG. 10.1007/978-3-319-91382-7_14.
  • Isoda, N., Rodrigues, R., Silva, A., Gonçalves, M., Mandelli, D., Figueiredo, F.C.A., & Carvalho, W.A. (2014). Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design. Powder Technology, 256, 175–181. doi:10.1016/j.powtec.2014.02.029
  • Jamshidi, M., Ghaedi, M., Dashtian, K., Ghaedi, A.M.M., Hajati, S., Goudarzi, A., & Alipanahpour, E. (2016). Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: Artificial neural network modeling and central composite design optimization. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 153, 257–267. doi:10.1016/j.saa.2015.08.024
  • Jaria, G., Silva, C.P., Oliveira, J.A.B.P., Santos, S.M., Gil, M.V., Otero, M., … Esteves, V.I. (2019). Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water-A full factorial design. Journal of Hazardous Materials, 370, 212–218. doi:10.1016/j.jhazmat.2018.02.053
  • Jeguirim, M., Belhachemi, M., Limousy, L., & Bennici, S. (2018). Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry – a review. Chemical Engineering Journal and the Biochemical Engineering Journal, 347, 493–504. doi:10.1016/j.cej.2018.04.063
  • Jodeh, S., Abdelwahab, F., Jaradat, N., Warad, I., & Jodeh, W. (2016). Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC). Journal of the Association of Arab Universities for Basic and Applied Sciences, 20(1), 32–38. doi:10.1016/j.jaubas.2014.11.002
  • Katheresan, V., Kansedo, J., & Lau, S.Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering., 6(4), 4676–4697. doi:10.1016/j.jece.2018.06.060
  • Kecira, Z., Benturki, A., Daoud, M., & Benturki, O. (2018). Effect of chemical activation on the surface properties of apricot stones based activated carbons and its adsorptive properties toward aniline. In book:Proceedings of the third international symposium on materials and sustainable development, Springer International Publishing, Springer Nature Switzerland AG(pp. 228–240). 10.1007/978-3-319-89707-3_27.
  • Khosravi, R., Moussavi, G., Ghaneian, M.T., Ehrampoush, M.H., Barikbin, B., Ebrahimi, A.A., & Sharifzadeh, G. (2018). Chromium adsorption from aqueous solution using novel green nanocomposite: Adsorbent characterization, isotherm, kinetic and thermodynamic investigation. Journal of Molecular Liquids., 256, 163–174. doi:10.1016/j.molliq.2018.02.033
  • Kong, J., Gu, R., Yuan, J., Liu, W., Wu, J., Fei, Z., & Yue, Q. (2018). Adsorption behavior of Ni(II) onto activated carbons from hide waste and high-pressure steaming hide waste. Ecotoxicology and Environmental Safety, 156, 294–300. doi:10.1016/j.ecoenv.2018.03.017
  • Kumar, A., & Jena, H.M. (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics, 6, 651–658. doi:10.1016/j.rinp.2016.09.012
  • Kumar, M., & Tamilarasan, R. (2013). Modeling studies for the removal of methylene blue from aqueous solution using Acacia fumosa seed shell activated carbon. Journal of Environmental Chemical Engineering, 1(4), 1108–1116. doi:10.1016/j.jece.2013.08.027
  • Lakshmi, S.D., Avti, P.K., & Hegde, G. (2018). Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review. Nano-Structures & Nano-Objects, 16, 306–321. doi:10.1016/j.nanoso.2018.08.001
  • Largitte, L., Brudey, T., Tant, T., Dumesnil, P.C., & Lodewyckx, P. (2016). Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous and Mesoporous Materials, 219, 265–275. doi:10.1016/j.micromeso.2015.07.005
  • Lee, H.W., Kim, Y.-M., Kim, S., Ryu, C., Park, S.H., Park, Y.-K., & Info, A. (2018). Review of the use of activated biochar for energy and environmental applications Review Articles. Carbon Letters, 26, 1–10. 10.5714/CL.2018.26.001.
  • Lee, S.Y., & Park, S.J. (2015). A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 23, 1–11. doi:10.1016/j.jiec.2014.09.001
  • Lee, T., Zubir, Z.A., Jamil, F.M., Matsumoto, A., & Yeoh, F.-Y. (2014). Combustion and pyrolysis of activated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment. Journal of Analytical and Applied Pyrolysis, 110, 408–418. doi:10.1016/j.jaap.2014.10.010
  • Le-Minh, N., Sivret, E.C., Shammay, A., & Stuetz, R.M. (2018). Factors affecting the adsorption of gaseous environmental odors by activated carbon: A critical review. Critical Reviews in Environmental Science and Technology, 48(4), 341–375. doi:10.1080/10643389.2018.1460984
  • Li, J., Dai, J., Liu, G., Zhang, H., Gao, Z., Fu, J., … Huang, Y. (2016). Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 94, 228–244. doi:10.1016/j.biombioe.2016.09.010
  • Li, K., Ruan, H., Ning, P., Wang, C., Sun, X., Song, X., & Han, S. (2018). Preparation of walnut shell-based activated carbon and its properties for simultaneous removal of H2S, COS and CS2from yellow phosphorus tail gas at low temperature. Research on Chemical Intermediates, 44(2), 1209–1233. doi:10.1007/s11164-017-3162-6
  • Li, L., Sato, Y., & Shimizu, T. (2015). Promoting effect of PKS ash on activated carbon preparation from cypress Sawdust Liuyun. International Proceedings of Chemical, Biological & Environmental Engineering, 51, 139–142. 10.7763/IPCBEE.
  • Li, Q., Qi, Y., & Gao, C. (2015). Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry. Journal of Cleaner Production, 86, 424–431. doi:10.1016/j.jclepro.2014.08.008
  • Li, W., Zhang, L., Peng, J., Li, N., & Zhu, X. (2008). Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Industrial Crops and Products., 27(3), 341–347. doi:10.1016/j.indcrop.2007.11.011
  • Lingamdinne, L.P., Koduru, J.R., & Karri, R.R. (2019). A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. Journal of Environmental Management, 231, 622–634. doi:10.1016/j.jenvman.2018.10.063
  • Maguana, Y., El, Elhadiri, N., Bouchdoug, M., & Benchanaa, M. (2018). Study of the in fluence of some factors on the preparation of activated carbon from walnut cake using the fractional factorial design. Journal of Environmental Chemical Engineering, 6(1), 1093–1099. doi:10.1016/j.jece.2018.01.023
  • Mahat, S.B., Omar, R., Idris, A., Mustapa Kamal, S.M., & Mohd Idris, A.I. (2018). Dynamic membrane applications in anaerobic and aerobic digestion for industrial wastewater: A mini review. Food Bioprod. Food and Bioproducts Processing, 112, 150–168. doi:10.1016/j.fbp.2018.09.008
  • Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C.H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350–359. doi:10.1016/j.biortech.2015.10.047
  • Mansour, F., Al-Hindi, M., Yahfoufi, R., Ayoub, G.M., & Ahmad, M.N. (2018). The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: A review. Reviews in Environmental Science and Bio/Technology, 17(1), 109–145. doi:10.1007/s11157-017-9456-8
  • Mariana, M., Mahidin, M., Mulana, F., & Aman, F. (2018). Utilization of activated carbon prepared from aceh coffee grounds as bio-sorbent for treatment of fertilizer industrial waste water. IOP Conference Series: Materials Science and Engineering, 358, 012027. doi:10.1088/1757-899X/358/1/012027
  • Menya, E., Olupot, P.W.W., Storz, H., Lubwama, M., & Kiros, Y. (2018). Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. Chemical Engineering Research and Design, 129, 271–296. doi:10.1016/j.cherd.2017.11.008
  • Mestre, A.S., Pires, R.A., Aroso, I., Fernandes, E.M., Pinto, M.L., Reis, R.L., … Carvalho, A.P. (2014). Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chemical Engineering Journal and the Biochemical Engineering Journal., 253, 408–417. doi:10.1016/j.cej.2014.05.051
  • Min, H.S., Abbas, M., Kanthasamy, R., Abdul Aziz, H., & Tay, C.C. (2017). Activated Carbon: Prepared From Various Precursors. Ideal International E – Publication Pvt. Ltd.
  • Mohamad Nor, N., Lau, L.C., Lee, K.T., & Mohamed, A.R. (2013). Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - a review. Journal of Environmental Chemical Engineering, 1(4), 658–666. doi:10.1016/j.jece.2013.09.017
  • Mohammad Razi, M.A., Al-Gheethi, A., Al-Qaini, M., & Yousef, A. (2018). Efficiency of activated carbon from palm kernel shell for treatment of greywater. Arab Journal of Basic and Applied Sciences, 25(3), 103–110. doi:10.1080/25765299.2018.1514142
  • Mohan, D., Sarswat, A., Ok, Y.S., & Pittman, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review. Bioresource Technology, 160, 191–202. doi:10.1016/j.biortech.2014.01.120
  • Mohd Din, A.T., Hameed, B.H., & Ahmad, A.L. (2009). Batch adsorption of phenol onto physiochemical-activated coconut shell. Journal of Hazardous Materials, 161(2-3), 1522–1529. doi:10.1016/j.jhazmat.2008.05.009
  • Morni, N.A.H., Radenahmad, N., Abu Bakar, M.S., Sukri, R.S., Phusunti, N., & Azad, A.K. (2018). Potential of sewage sludge as energy recovery via gasification process. Paper presented at the 7th Brunei International Conference on Engineering and Technology 2018 (BICET 2018). Institution of Engineering and Technology, p. 31 (4pp.). doi:10.1049/cp.2018.1528
  • Mu’azu, N.D., Jarrah, N., Zubair, M., & Alagha, O. (2017). Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: A review. International Journal of Environmental Research and Public Health, 14(10), 1094. doi:10.3390/ijerph14101094
  • Namasivayam, C., & Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon. Journal of Colloid and Interface Science, 280(2), 359–365. doi:10.1016/j.jcis.2004.08.015
  • Namasivayam, C., & Sangeetha, D. (2005). Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste. Chemosphere, 60(11), 1616–1623. doi:10.1016/j.chemosphere.2005.02.051
  • Namasivayam, C., & Sangeetha, D. (2006). Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Bioresource Technology, 97(10), 1194–1200. doi:10.1016/j.biortech.2005.05.008
  • Niazi, L., Lashanizadegan, A., & Sharififard, H. (2018). Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. Journal of Cleaner Production, 185, 554–561. doi:10.1016/j.jclepro.2018.03.026
  • Niksiar, A., & Nasernejad, B. (2017). Activated carbon preparation from pistachio shell pyrolysis and gasification in a spouted bed reactor. Biomass and Bioenergy, 106, 43–50. doi:10.1016/j.biombioe.2017.08.017
  • Odetoye, T.E., Abu Bakar, M.S., & Titiloye, J.O. (2019). Pyrolysis and characterization of Jatropha curcas shell and seed coat. Nigerian Journal of Technological Development, 16(2), 71. doi:10.4314/njtd.v16i2.4
  • Odetoye, T.E., Afolabi, T.J., Abu Bakar, M.S., & Titiloye, J.O. (2018). Thermochemical characterization of Nigerian Jatropha curcas fruit and seed residues for biofuel production. Energy, Ecology and Environment, 3(6), 330–337. doi:10.1007/s40974-018-0104-0
  • Odetoye, T.E., Onifade, K.R., AbuBakar, M.S., & Titiloye, J.O. (2013). Thermochemical characterisation of Parinari polyandra Benth fruit shell. Industrial Crops and Products, 44, 62–66. doi:10.1016/j.indcrop.2012.10.013
  • Ogungbenro, A.E., Quang, D. V., Al-Ali, K., & Abu-Zahra, M.R.M. (2017). Activated carbon from date seeds for CO2 capture applications. Energy Procedia., 114, 2313–2321. doi:10.1016/j.egypro.2017.03.1370
  • Oladipo, A.A., & Gazi, M. (2015). Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper(II) ions and direct red 80 dye: A multi-component adsorption system. Journal of the Taiwan Institute of Chemical Engineers., 47, 125–136. doi:10.1016/j.jtice.2014.09.027
  • Oladipo, A.A., & Ifebajo, A.O. (2018). Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis. Journal of Environmental Management, 209, 9–16. doi:10.1016/j.jenvman.2017.12.030
  • Oladipo, A.A., Ifebajo, A.O., Nisar, N., & Ajayi, O.A. (2017). High-performance magnetic chicken bone-based biochar for efficient removal of rhodamine-B dye and tetracycline: Competitive sorption analysis. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 76(2), 373–385. doi:10.2166/wst.2017.209
  • Ozbay, N., & Yargic, A.S. (2016). Comparison of surface and structural properties of carbonaceous materials prepared by chemical activation of tomato paste waste: The effects of activator type and impregnation ratio. Journal of Applied Chemistry 2016, 1–10. 10.1155/2016/8236238.
  • Pathak, P.D., & Mandavgane, S.A. (2015). Preparation and characterization of raw and carbon from banana peel by microwave activation: Application in citric acid adsorption. Journal of Environmental Chemical Engineering, 3(4), 2435–2447. doi:10.1016/j.jece.2015.08.023
  • Qaisrani, Z.N., Shams, S., Zhenren, G., Reza, M.S., & Zainuddin, Q. (2018). Quantitative analysis of marine debris along the sea beaches of Brunei Darussalam. IET Conference Publications. Institution of Engineering and Technology, p. 108 (4 pp.). 10.1049/cp.2018.1605.
  • Radenahmad, N., Afif, A., Petra, P.I., Rahman, S.M.H., Eriksson, S.G., & Azad, A.K. (2016). Proton-conducting electrolytes for direct methanol and direct urea fuel cells – a state-of-the-art review. Renew. Sustain. Energy Rev, 10.1016/j.rser.2015.12.103.
  • Radenahmad, N., Rahman, I.S.A., Morni, N.A.H., & Azad, A.K. (2018). Acacia-polyethylene terephthalate co- gasification as renewable energy resource. Int. J. Renew. Energy Res, 8, 1612–1620.
  • Radenahmad, N., Tasfiah, A., Saghir, M., Taweekun, J., Saifullah, M., Bakar, A., … Kalam, A. (2020). A review on biomass derived syngas for SOFC based combined heat and power application. Renew. Sustain. Energy Rev, 119 109560. https://doi.org/10.1016/j.rser.2019.109560.
  • Radi, D.B., Stanojevi, M.M., Obradovi, M.O., & Jovovi, A.M. (2017). Thermal analysis of physical and chemical changes occuring during regeneration of activated carbon. Thermal Science, 21, 1067–1081. 10.2298/TSCI150720048R.
  • Rafsanjani, H.H., Kamandari, H., & Najjarzadeh, H. (2013). Study on pore and surface development of activated carbon produced from Iranian coal in a rotary Kiln reactor. Iran. J. Chem. Eng, 10, 27–38.
  • Rani, N., Gupta, A., & Yadav, A.K. (2006). Removal of Cr (VI) form aqueous solutions by Acacia nilotica bark. Environmental Technology., 27(6), 597–602. doi:10.1080/09593332708618672
  • Rashidi, N.A., & Yusup, S. (2017). A review on recent technological advancement in the activated carbon production from oil palm wastes. Chemical Engineering Journal and the Biochemical Engineering Journal., 314, 277–290. doi:10.1016/j.cej.2016.11.059
  • Regti, A., Laamari, M.R., Stiriba, S.-E., & El Haddad, M. (2017). Potential use of activated carbon derived from Persea species under alkaline conditions for removing cationic dye from wastewaters. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 10–18. 10.1016/j.jaubas.2017.01.003.
  • Reza, M.S., Ahmed, A., Caesarendra, W., Abu Bakar, M.S., Shams, S., Saidur, R., … Azad, A.K. (2019). Acacia Holosericea: An invasive species for bio-char, bio-oil and biogas production. Bioengineering, 6(2), 33. doi:10.3390/bioengineering6020033
  • Reza, M.S., Islam, S.N., Afroze, S., Bakar, M.S.A., Sukri, R.S., Rahman, S., & Azad, A.K. (2020). Evaluation of the bioenergy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecology and Environment, 5(2), 118–133. doi:10.1007/s40974-019-00139-0
  • Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268–1287. doi:10.1016/j.chemosphere.2013.07.059
  • Safe handling of activated carbon | Desotec [WWW Document], n.d. Retrieved from March 12, 2019, https://www.desotec.com/en/carbonology/carbonology-academy/safe-handling-activated-carbon.
  • Sahu, U.K., Sahu, S., Mahapatra, S.S., & Patel, R.K. (2017). Cigarette soot activated carbon modified with Fe3O4 nanoparticles as an effective adsorbent for As(III) and As(V): Material preparation, characterization and adsorption mechanism study. Journal of Molecular Liquids., 243, 395–405. doi:10.1016/j.molliq.2017.08.055
  • Sajjadi, S.-A., Mohammadzadeh, A., Tran, H.N., Anastopoulos, I., Dotto, G.L., Lopičić, Z.R., … Hosseini-Bandegharaei, A. (2018). Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. Journal of Environmental Management, 223, 1001–1009. doi:10.1016/j.jenvman.2018.06.077
  • Salman, J.M., & Hussein, F.H. (2014). Batch adsorber design for different solution volume/adsorbate mass ratios of bentazon, carbofuran and 2,4-D adsorption on to date seeds activated carbon. Journal of Environmental Analytical Chemistry, 2, 1–5. 10.4172/2380-2391.1000120.
  • Salman, J.M., Njoku, V.O., & Hameed, B.H. (2011). Bentazon and carbofuran adsorption onto date seed activated carbon: Kinetics and equilibrium. Chemical Engineering Journal and the Biochemical Engineering Journal., 173(2), 361–368. doi:10.1016/j.cej.2011.07.066
  • Sayğılı, H., & Güzel, F. (2018). Novel and sustainable precursor for high-quality activated carbon preparation by conventional pyrolysis: Optimization of produce conditions and feasibility in adsorption studies. Advanced Powder Technology., 29(3), 726–736. doi:10.1016/j.apt.2017.12.014
  • Sharma, P., Kaur, H., Sharma, M., & Sahore, V. (2011). A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environmental Monitoring and Assessment, 183(1–4), 151–195. doi:10.1007/s10661-011-1914-0
  • Shen, Y., & Fu, Y. (2018). KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Materials Today Energy, 9, 397–405. doi:10.1016/j.mtener.2018.07.005
  • Shi, Q., Zhang, J., Zhang, C., Li, C., Zhang, B., Hu, W., … Zhao, R. (2010). Preparation of activated carbon from cattail and its application for dyes removal. Journal of Environmental Sciences, 22(1), 91–97. doi:10.1016/S1001-0742(09)60079-6
  • Shrestha, D., Gyawali, G., & Rajbhandari, A.R. (2009). Preparation and characterization of activated carbon from waste sawdust from saw mill. Journal of Hazardous Materials, 165, 481–485. 10.1016/j.jhazmat.2008.10.011.
  • Sivarajasekar, N., Srileka, S., Samson Arun Prasath, S., Robinson, S., & Saravanan, K. (2008). Kinetic modeling for biosorption of metylene blue onto H3PO4 activated Acacia arabica. Carbon Letters, 9(3), 181–187. doi:10.5714/CL.2008.9.3.181
  • Sun, K., & Jiang, J. c. (2010). Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass and Bioenergy, 34(4), 539–544. doi:10.1016/j.biombioe.2009.12.020
  • Sun, K., Leng, C.Y., Jiang, J.C., Bu, Q., Lin, G.F., Lu, X.C., & Zhu, G.Z. (2017). Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance. New Carbon Materials, 32(5), 451–459. doi:10.1016/S1872-5805(17)60134-3
  • Tan, K.L., & Hameed, B.H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25–48. doi:10.1016/j.jtice.2017.01.024
  • Tchikuala, E.F., Mourão, P.A.M., & Nabais, J.M.V. (2017). Removal of phenol by adsorption on activated carbon from aqueous solution, In: Wastes: Solutions, Treatments and Opportunities (pp. pp. 1–3). Faculty of Engineering of the University of Porto, Porto, Portugal.
  • Teow, Y.H., & Mohammad, A.W. (2019). New generation nanomaterials for water desalination: A review. Desalination, 451, 2–17. doi:10.1016/j.desal.2017.11.041
  • The Care and Handling of Activated Carbon - WCP Online [WWW Document], n.d. URL http://wcponline.com/2005/06/22/care-handling-activated-carbon/. (accessed 12.3.19).
  • Theydan, S.K., & Ahmed, M.J. (2012). Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis, 97, 116–122. doi:10.1016/j.jaap.2012.05.008
  • Tseng, R.-L., Tseng, S.-K., & Wu, F.-C. (2006). Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1–3), 69–78. doi:10.1016/j.colsurfa.2005.12.042
  • Tsoncheva, T., Mileva, A., Tsyntsarski, B., Paneva, D., Spassova, I., Kovacheva, D., … Petrov, N. (2018). Activated carbon from Bulgarian peach stones as a support of catalysts for methanol decomposition. Biomass and Bioenergy, 109, 135–146. doi:10.1016/j.biombioe.2017.12.022
  • Tuan, T.Q., Son, N., Van, Dung, H.T.K., Luong, N.H., Thuy, B.T., Anh, N.T., Van, … Hai, N.H. (2011). Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. Journal of Hazardous Materials, 192(3), 1321–1329. doi:10.1016/j.jhazmat.2011.06.044
  • Ukanwa, P., Sakrabani, A. & Mandavgane, (2019). A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability, 11, 6204. doi:10.3390/su11226204
  • Vences-Alvarez, E., Razo-Flores, E., Lázaro, I., Briones-Gallardo, R., Velasco-Martínez, G., & Rangel-Mendez, J.R. (2017). Gold recovery from very dilute solutions from a mine in closing process: Adsorption-desorption onto carbon materials. Journal of Molecular Liquids., 240, 549–555. doi:10.1016/j.molliq.2017.05.069
  • Viswanathan, G., Jaswanth, A., Gopalakrishnan, S., & Siva Ilango, S. (2009). Mapping of fluoride endemic areas and assessment of fluoride exposure. The Science of the Total Environment, 407(5), 1579–1587. doi:10.1016/j.scitotenv.2008.10.020
  • Wan Ibrahim, W.M.H., Mohamad Amini, M.H., Sulaiman, N.S., & Kadir, W.R.A. (2019). Powdered activated carbon prepared from Leucaena leucocephala biomass for cadmium removal in water purification process. Arab Journal of Basic and Applied Sciences, 26(1), 30–40. doi:10.1080/25765299.2018.1533203
  • Wang, H., Xie, R., Zhang, J., & Zhao, J. (2018). Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: Mass transfer and equilibrium modeling. Advanced Powder Technology., 29(1), 27–35. doi:10.1016/j.apt.2017.09.027
  • Wang, J., Wu, F.-A., Wang, M., Qiu, N., Liang, Y., Fang, S.-Q., & Jiang, X. (2010). Preparation of activated carbon from a renewable agricultural residue of pruning mulberry shoot. African J. Biotechnol, 9, 2762–2767. 10.5897/AJB2010.000-3101.
  • Wong, S., Ngadi, N., Inuwa, I.M., & Hassan, O. (2018). Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production, 175, 361–375. doi:10.1016/j.jclepro.2017.12.059
  • Wu, F.C., & Tseng, R.L. (2006). Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water. Journal of Colloid and Interface Science, 294(1), 21–30. doi:10.1016/j.jcis.2005.06.084
  • WWAP/UN-Water (2018). The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. 7, Place de Fontenoy, 75352 Paris 07 SP, France.
  • Yahya, M.A., Al-Qodah, Z., & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235. doi:10.1016/j.rser.2015.02.051
  • Yahya, M.A., Mansor, M.H., Zolkarnaini, W.A.A.W., Rusli, N.S., Aminuddin, A., Mohamad, K., … Ozair, L.N. (2018). A brief review on activated carbon derived from agriculture by-product. in: AIP Conference Proceedings. pp. 030023–1–030023–8. doi:10.1063/1.5041244
  • Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., … Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal and the Biochemical Engineering Journal, 366, 608–621. doi:10.1016/j.cej.2019.02.119
  • Yang, Z., Feng, R., & Zhang, Z. (2019). A review on reverse osmosis and nanofiltration membranes for water purification. Polymers (Basel), 11, 1252. doi:10.3390/polym11081252
  • Yusuff, A.S. (2019). Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: Equilibrium, kinetic and thermodynamic studies. Arab Journal of Basic and Applied Sciences, 26(1), 89–102. doi:10.1080/25765299.2019.1567656
  • Zaini, M.A.A., & Kamaruddin, M.J. (2013). Critical issues in microwave-assisted activated carbon preparation. Journal of Analytical and Applied Pyrolysis, 101, 238–241. doi:10.1016/j.jaap.2013.02.003
  • Zbair, M., Ainassaari, K., Drif, A., Ojala, S., Bottlinger, M., Pirilä, M., … Brahmi, R. (2018). Toward new benchmark adsorbents: Preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environmental Science and Pollution Research, 25(2), 1869–1882. doi:10.1007/s11356-017-0634-6
  • Zhao, Y., Liu, X., Yao, K.X., Zhao, L., & Han, Y. (2012). Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chemistry of Materials, 24(24), 4725–4734. doi:10.1021/cm303072n