1,383
Views
18
CrossRef citations to date
0
Altmetric
Article

Multi-parametric filtration effect of the dyes mixture removal with the low cost materials

, , , , ORCID Icon, & show all
Pages 248-258 | Received 20 Nov 2018, Accepted 25 May 2020, Published online: 12 Jun 2020

References

  • Abd Mutalib, M., Rahman, M. A., Othman, M. H. D., Ismail, A. F., & Jaafar, J. (2017). Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. In Membrane characterization (pp. 161–179, Chapter 9).
  • Ait Ahsaine, H., Zbair, M., Anfar, Z., Naciri, Y., El Haouti, R., El Alem, N., & Ezahri, M. (2018). Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling. Materials Today Chemistry, 8, 121–132. doi:10.1016/j.mtchem.2018.03.004
  • Alok, M., Jyoti, M., Arti, M., & Gupta, V. K. (2010). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science, 344(2), 497–507. doi:10.1016/j.jcis.2010.01.007
  • Caglar, B., Afsin, B., Tabak, A., & Eren, E. (2009). Characterization of the cation-exchanged bentonite by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal, 149(1–3), 242–248. doi:10.1016/j.cej.2008.10.028
  • Cao, J. S., Lin, J. X., Fang, F., Zhang, M. T., & Hu, Z. R. (2014). A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies. Bioresource Technology, 163, 199–205. doi:10.1016/j.biortech.2014.04.046
  • Çelekli, A., Birecikligil, S. S., Geyik, F., & Bozkurt, H. (2012). Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model. Bioresource Technology, 103(1), 64–70. doi:10.1016/j.biortech.2011.09.106
  • Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2(3), 1434–1444. doi:10.1016/j.jece.2014.07.008
  • Durán-Valle, C. J., Gómez-Corzo, M., Pastor-Villegas, J., & Gómez–Serrano, V. (2005). Study of cherry stones as raw material in preparation of carbonaceous adsorbents. Journal of Analytical and Applied Pyrolysis, 73(1), 59–67. doi:10.1016/j.jaap.2004.10.004
  • El Gamal, M., Hussein, A. M., El-Naas, M. H., Renju, Z., & Judd, S. (2018). Bio-regeneration of activated carbon: A comprehensive review. Separation and Purification Technology, 197, 345–359. doi:10.1016/j.seppur.2018.01.015
  • El Haddad, M., Slimani, R., Mamouni, R., ElAntri, S., & Lazar, S. (2013). Removal of two textile dyes from aqueous solutions onto calcined bones. Journal of the Association of Arab Universities for Basic and Applied Sciences, 14(1), 51–59. doi:10.1016/j.jaubas.2013.03.002
  • Ellouze, E., Tahri, N., & Ben Amar, R. (2012). Enhancement of textile wastewater treatment process using nanofiltration. Desalination, 286, 16–23. doi:10.1016/j.desal.2011.09.025
  • Ferrero, F. (2007). Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials, 142(1–2), 144–152. doi:10.1016/j.jhazmat.2006.07.072
  • Flavia, R. A., Amadeu, M. V. M., Soares, D. P. O., & Carlos, G. (2018). Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. Environmental Pollution (Barking, Essex 1987), 235, 255–262. doi:10.1016/j.envpol.2017.12.020
  • Ghaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Agarwal, S., Maity, A., & Gupta, V. K. (2015). Modeling of competitive ultrasonic assisted removal of the dyes – Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chemical Engineering Journal, 268, 28–37. doi:10.1016/j.cej.2014.12.090
  • Giraudet, S., & Le Cloirec, P. (2017). Activated carbon filters for filtration–adsorption. In Activated carbon fiber and textiles (pp. 211–243, Chapter 9).
  • Gupta, V. K. (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Economics and Management, 90, 2313–2342. doi:10.1016/j.jenvman.2008.11.017
  • Gupta, V. K., Arunima, N., & Shilpi, A. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20 (1), 1–18. doi:10.4491/eer.2015.018
  • Gupta, V. K., Rajeev, J., Arunima, N., Shilpi, A., & Meenakshi, S. (2011). Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C, 31(5), 1062–1067. doi:10.1016/j.msec.2011.03.006
  • Güzel, F., Sayğılı, H., Gülbahar, A. S., & Filiz, K. (2015). New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: Characterization, equilibrium and kinetic modeling. Journal of Molecular Liquids, 206, 244–255. doi:10.1016/j.molliq.2015.02.037
  • Hemant, S., Garima, C., Arinjay, K. J., & Sharma, S. K. (2017). Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 5(1), 122–135. doi:10.1016/j.jece.2016.11.030
  • Idrissi, M., Miyah, Y., Chaouch, M., El Ouali Lalami, A., Lairini, S., Nenov, V., & Zerrouq, F. (2014). CWPO of phenol using manganese-based catalysts. Journal of Materials and Environmental Science, 5 (S1), 2309–2313.
  • Janek, M., Zich, D., & Naftaly, M. (2014). Terahertz time-domain spectroscopy response of amines and amino acids intercalated smectites in far-infrared region. Materials Chemistry and Physics, 145(3), 278–287. doi:10.1016/j.matchemphys.2014.02.004
  • Jiang, Z., Zhao, L., & Zhang, D. X. (2018). Study of adsorption behavior in shale reservoirs under high pressure. Journal of Natural Gas Science and Engineering., 49, 275–285. doi:10.1016/j.jngse.2017.11.009
  • Johir, M. A. H., Pradhan, M., Loganathan, P., Kandasamy, J., & Vigneswaran, S. (2016). Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies. Journal of Environmental Management, 167, 167–174. doi:10.1016/j.jenvman.2015.11.048
  • Jolanta, P., Anna, J. W., Agnieszka, S. C., Kamila, W., Magdalena, K., Jadwiga, S. L., & Joanna, L. O. (2016). Toxicity and dyeing properties of dyes obtained through laccase-mediated synthesis. Journal of Cleaner Production, 112, 4265–4272.
  • Kayode, A. A., & Olugbenga, S. B. (2015). Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry, 12, 8–24.
  • Koksal, E., Afsin, B., Tabak, A., & Caglar, B. (2011). Structural characterization of aniline-bentonite composite by FTIR, DTA, TG, and PXRD analyses and BET measurement. Spectroscopy Letters, 44(2), 77–82. doi:10.1080/00387010903555953
  • Lahoussine-Turcaud, I. V., Wiesner, M., Bottero, J. Y., & Mallevialle, J. (1992). Coagulation-flocculation with aluminium salts: Influence on the filtration efficacy with microporous membranes. Water Research, 26(5), 695–702. doi:10.1016/0043-1354(92)90247-2
  • Mahdi, H., & Sevinç, Ş. S. (2016). Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. Journal of Molecular Liquids, 224, 607–617.
  • Mashkoor, F., & Abu, N. (2019). Polyaniline/Tectona grandis sawdust: A novel composite for efficient decontamination of synthetically polluted water containing crystal violet dye. Groundwater for Sustainable Development, 8, 390–401. doi:10.1016/j.gsd.2018.12.008
  • Miyah, Y., Idrissi, M., & Zerrouq, F. (2015). Study and modeling of the kinetics methylene blue adsorption on the clay adsorbents (pyrophillite, calcite). Journal of Materials and Environmental Science., 6 (3), 699–712.
  • Miyah, Y., Lahrichi, A., & Idrissi, M. (2016). Removal of cationic dye – Methylene blue – From aqueous solution by adsorption onto corn cob powder calcined. Journal of Materials and Environmental Science, 7 (1), 96–104.
  • Miyah, Y., Lahrichi, A., Idrissi, M., Boujraf, S., Taouda, H., & Zerrouq, F. (2017). Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite. Journal of the Association of Arab Universities for Basic and Applied Sciences, 23(1), 20–28. doi:10.1016/j.jaubas.2016.06.001
  • Miyah, Y., Lahrichi, A., Idrissi, M., Khalil, A., & Zerrouq, F. (2018). Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies. Surfaces and Interfaces, 11, 74–81. doi:10.1016/j.surfin.2018.03.006
  • Mustafa, T. Y., Tushar, K. S., Sharmeen, A., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. doi:10.1016/j.cis.2014.04.002
  • Roberta, C., Filippo, C., Anna, L., Gregory, C., Claudia, I. C., Matteo, V., … Diego, B. (2017). Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata. Ecotoxicology and Environmental Safety, 144, 79–87.
  • Rossi, T., Silva, P. M. S., Moura, L. F. D., Araújo, M. C., Brito, J. O., & Freeman, H. S. (2017). Waste from eucalyptus wood steaming as a natural dye source for textile fibers. Journal of Cleaner Production, 143, 303–310. doi:10.1016/j.jclepro.2016.12.109
  • Russo, V., Masiello, D., Trifuoggi, M., Di Serio, M., & Tesser, R. (2016). Design of an adsorption column for methylene blue abatement over silica: From batch to continuous modeling. Chemical Engineering Journal, 302, 287–295. doi:10.1016/j.cej.2016.05.020
  • Sabino, D. G., Giusy, L., Mariangela, G., & Michele, N. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10–40.
  • Saima, N., Haq Nawaz, B., Mohammad, Z., Muhammad, Z., & Muhammad, A. (2017). Removal of actacid orange-RL dye using biocomposites: Modeling studies. Polish Journal of Environmental Studies, 26 (5), 2125–2134.
  • Saravanan, R., Elisban, S., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029–1033. doi:10.1016/j.molliq.2016.06.074
  • Shakoor, S., & Abu, N. (2016). Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 66, 154–163. doi:10.1016/j.jtice.2016.06.009
  • Shakoor, S., & Abu, N. (2017). Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using cucumis sativus peel waste as a low-cost adsorbent. Groundwater for Sustainable Development, 5, 152–159. doi:10.1016/j.gsd.2017.06.005
  • Shakoor, S., & Abu, N. (2018a). Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundwater for Sustainable Development, 7, 30–38. doi:10.1016/j.gsd.2018.03.004
  • Shakoor, S., & Abu, N. (2018b). Utilization of Punica granatum peel as an eco-friendly biosorbent for the removal of methylene blue dye from aqueous solution. Journal of Applied Biotechnology & Bioengineering, 5(4), 242–249. doi:10.15406/jabb.2018.05.00145
  • Shakoor, S., & Abu, N. (2019). Utilization of Cucumis sativus peel as an eco-friendly biosorbent for the confiscation of crystal violet dye from artificially contaminated wastewater. Analytical Chemistry Letters, 9(1), 1–19. doi:10.1080/22297928.2019.1588162
  • Smitha, T., Santhi, T., Prasad, A. L., & Manonmani, S. (2017). Cucumis sativus used as adsorbent for the removal of dyes from aqueous solution. Arabian Journal of Chemistry, 10 (1), S244–S251. doi:10.1016/j.arabjc.2012.07.030
  • Syahidah, N. Z., Herlina, A. R., & Woei-Jye, L. (2018). Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. Sensors and Actuators B: Chemical, 255, 2657–2689.
  • Tawfik, A. S., & Gupta, V. K. (2012). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Journal of Colloid and Interface Science, 371(1), 101–106. doi:10.1016/j.jcis.2011.12.038
  • Wu, Y., Su, M., Chen, J., Xu, Z., Tang, J., Chang, X., & Chen, D. (2019). Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigments, 170, 107591. doi:10.1016/j.dyepig.2019.107591
  • Yang, J., & Qiu, K. (2010). Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal and the Biochemical Engineering Journal, 165(1), 209–217. doi:10.1016/j.cej.2010.09.019
  • Zayed, A. M., Abdel Wahed, M. S. M., Essam, A. M., & Mika, S. (2018). Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Applied Clay Science, 166, 49–60. doi:10.1016/j.clay.2018.09.013
  • Zhai, L., Bai, Z., Zhu, Y., Wang, B., & Luo, W. (2018). Fabrication of chitosan microspheres for efficient adsorption of methyl orange. Chinese Journal of Chemical Engineering, 26(3), 657–666. doi:10.1016/j.cjche.2017.08.015
  • Zhang, J., Yan, J., & Sheng, J. (2015). Dry grinding effect on pyrophyllite-quartz natural mixture and its influence on the structural alternation of pyrophyllite. Micron (Oxford, England: 1993), 71, 1–6. doi:10.1016/j.micron.2014.12.005