653
Views
10
CrossRef citations to date
0
Altmetric
Article

Deformation in transversely isotropic thermoelastic thin circular plate due to multi-dual-phase-lag heat transfer and time-harmonic sources

ORCID Icon, ORCID Icon &
Pages 259-269 | Received 24 Dec 2019, Accepted 06 Jun 2020, Published online: 22 Jun 2020

References

  • Bhatti, M. M., Ellahi, R., Zeeshan, A., Marin, M., & Ijaz, N. (2019). Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Modern Physics Letters B, 33(35), 1950439. doi:10.1142/S0217984919504396
  • Bhatti, M. M., & Lu, D. Q. (2019b). Analytical study of the head-on collision process between hydroelastic solitary waves in the presence of a uniform current. Symmetry, 11(3), 333. doi:10.3390/sym11030333
  • Chauthale, S., & Khobragade, N. W. (2017). Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses. Global Journal of Pure and Applied Mathematics, 13(10), 7505–7527.
  • Dhaliwal, R., & Singh, A. (1980). Dynamic coupled thermoelasticity. New Delhi, India: Hindustan Publication Corporation.
  • Elsheikh, A. H., Guo, J., & Lee, K.-M. (2019). Thermal deflection and thermal stresses in a thin circular plate under an axisymmetric heat source. Journal of Thermal Stresses, 42(3), 361–373. doi:10.1080/01495739.2018.1482807
  • Ezzat, M., & Ai-Bary, A. (2017). Fractional magneto-thermoelastic materials with phase lag Green-Naghdi theories. Steel and Composite Structures, 24(3), 297–307. 10.12989/scs.2017.24.3.297.
  • Ezzat, M.A., & El-Bary, A.A. (2016). Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature. International Journal of Applied Electromagnetics and Mechanics, 50(4), 549–567. doi:10.3233/JAE-150131
  • Ezzat, M., El-Karamany, A., & El-Bary, A. (2015). Thermo-viscoelastic materials with fractional relaxation operators. Applied Mathematical Modelling, 39(23-24), 7499–7512. doi:10.1016/j.apm.2015.03.018
  • Gaikwad, K. R. (2016). Two-dimensional steady-state temperature distribution of a thin circular plate due to uniform internal energy generation. Applied & Interdisciplinary Mathematics, 3, 1–10.
  • Gaikwad, K. R. (2019). Axi-symmetric thermoelastic stress analysis of a thin circular plate due to heat generation. International Journal of Dynamical Systems and Differential Equations, 9(2), 187– 202. doi:10.1504/IJDSDE.2019.100571
  • Gaikwad, M., & Deshmukh, K. C. (2005). Thermal deflection of an inverse thermoelastic problemin a thin isotropic circular plate. Applied Mathematical Modelling, 29(9), 797–804. doi:10.1016/j.apm.2004.10.012
  • Gaikwad, P. B., P., Ghadle, K., & Mane, J. K. (2012). An Inverse Thermoelastic Problem Of Circular Plate. The Bulletin of Society for Mathematical Services and Standards, 1(1), 1–5. doi:10.18052/www.scipress.com/BSMaSS.1.1
  • He, J.-H. (2020). A short review on analytical methods for a fully fourth-order nonlinear integral boundary value problem with fractal derivatives. International Journal of Numerical Methods for Heat & Fluid Flow, ahead-of-print1-8, doi:10.1108/HFF-01-2020-0060
  • He, J.-H., & Ain, Q.-T. (2020). New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle. Thermal Science, 24(2 Part A), 659–681. doi:10.2298/TSCI200127065H
  • He, J., ‐H., & Jin, X. (2020). A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube. Mathematical Methods in the Applied Sciences, 1–10. doi:10.1002/mma.6321
  • He, J.-H., & Latifizadeh, H. (2020). A general numerical algorithm for nonlinear differential equations by the variational iteration method. International Journal of Numerical Methods for Heat & Fluid Flow, ahead-of-print(ahead-of-print) , 1-12. doi:10.1108/HFF-01-2020-0029
  • Kar, A., & Kanoria, M. (2011). Analysis of thermoelastic response in a fiber reinforced thin annular disc with three-phase-lag effect. European Journal of Pure and Applied Mathematics, 4(3), 304–321.
  • Kaur, I., & Lata, P. (2019a). Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer. SN Applied Sciences, 1(8), 900. doi:10.1007/s42452-019-0942-1
  • Kaur, I., & Lata, P. (2019b). Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source. International Journal of Mechanical and Materials Engineering, 14(1), 1–13. doi:10.1186/s40712-019-0107-4
  • Kaur, I., & Lata, P. (2019c). Rayleigh wave propagation in transversely isotropic magneto thermoelastic medium with three phase lag heat transfer and diffusion. International Journal of Mechanical and Materials Engineering, 14(1), 1–11. doi:10.1186/s40712-019-0108-3
  • Kumar, R., Sharma, N., & Lata, P. (2016). Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures. Applied Mathematical Modelling, 40(13-14), 6560–6575. doi:10.1016/j.apm.2016.01.061
  • Lata, P., & Kaur, I. (2019a). Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources. Coupled Systems Mechanics, 8(5), 415–437. 10.12989/csm.2019.8.5.415.
  • Lata, P., & Kaur, I. (2019b). Plane wave propagation in transversely isotropic magnetothermoelastic rotating medium with fractional order generalized heat transfer. Structural Monitoring and Maintenance, 6(3), 191–218. 10.12989/smm.2019.6.3.191.
  • Lata, P., & Kaur, I. (2019c). Transversely isotropic thermoelastic thin circular plate with time harmonic sources. Geomechanics and Engineering, 19(1), 29–36. 10.12989/gae.2019.19.1.029.
  • Li, X.-X., & He, C.-H. (2019). Homotopy perturbation method coupled with the enhanced perturbation method. Journal of Low Frequency Noise, Vibration and Active Control, 38(3/4), 1399–1403. doi:10.1177/1461348418800554
  • Marin, M. (1997a). An uniqueness result for body with voids in linear thermoelasticity. Rendiconti di Matematica, Roma, 17(7), 103–113.
  • Marin, M. (1997b). On the domain of influence in thermoelasticity of bodies with voids. Archivum Mathematicum, 33(4), 301–308.
  • Marin, M., Agarwal, R., & Mahmoud, S. (2013). Nonsimple material problems addressed by the Lagrange’s identity. Boundary Value Problems, 2013(1), 1–14. doi:10.1186/1687-2770-2013-135
  • Marin, M., Baleanu, D., & Vlase, S. (2017a). Effect of microtemperatures for micropolar thermoelastic bodies. Structural Engineering and Mechanics, 61(3), 381–387. doi:10.12989/sem.2017.61.3.381
  • Marin, M., & Craciun, E. (2017). Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. Composites Part B: Engineering, 126, 27–37. doi:10.1016/j.compositesb.2017.05.063
  • Marin, M., Craciun, E. M., & Pop, N. (2016). Considerations on mixed initial-boundary value problems for micropolar porous bodies. Dynamic Systems and Applications, 25(1-2), 175–196.
  • Marin, M., Ellahi, R., & Chirilă, A. (2017b). On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian Journal of Mathematics, 33(2), 219–232.
  • Marin, M., & Florea, O. (2014). On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. Analele Universitatii "Ovidius" Constanta - Seria Matematica, 22(1), 169–188. doi:10.2478/auom-2014-0014
  • Marin, M., Vlase, S., Ellahi, R., & Bhatti, M.M. (2019). On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure. Symmetry, 11(7), 863. doi:10.3390/sym11070863
  • Naeeni, M. R., Campagna, R., Eskandari-Ghadi, M., & Ardalan, A. A. (2015). Performance comparison of numerical inversion methods for Laplace and Hankel integral transforms in engineering problems. Applied Mathematics and Computation, 250, 759–775. doi:10.1016/j.amc.2014.10.102
  • Press, W., Teukolshy, S.A., Vellerling, W.T., & Flannery, B. (1986). Numerical recipes in Fortran. New York: Cambridge University Press Cambridge.
  • Sharma, N., Kumar, R., & Lata, P. (2015). Effect of two temperature and anisotropy in an axisymmetric problem in transversely isotropic thermoelastic solid without energy dissipation and with two temperature. American Journal of Engineering Research, 4(7), 176–187.
  • Tikhe, A. K., & Deshmukh, K. C. (2005). october). Inverse transient thermoelastic deformations in thin circular plates. Sadhana, 30(5), 661–671. doi:10.1007/BF02703513
  • Tikhe, A., & Deshmukh, K. (2006). Inverse heat conduction problem in a thin circular plate and its thermal deflection. Applied Mathematical Modelling, 30(6), 554–560. doi:10.1016/j.apm.2005.12.014
  • Ventsel, E., & Krauthammer, T. (2001). Thin plates and shells: Theory: Analysis, and applications. Boca Raton: Taylor & Francis. doi: 10.1201/9780203908723.
  • Zenkour, A. M. (2018). Refined microtemperatures multi-phase-lags theory for plane wave propagation in thermoelastic medium. Results in Physics, 11, 929–937. doi:10.1016/j.rinp.2018.10.030
  • Zhao, F. (2008). Nonlinear solutions for circular membranes and thin plates. Proceedings of SPIE - The International Society for Optical Engineering, 6926 69260W-1. doi:10.1117/12.775511
  • Zietlow, D. W., Griffin, D. C., & Moore, T. R. (2012). The limitations on applying classical thin plate theory to thin annular plates clamped on the inner boundary. AIP Advances, 1-8, 2(4), 042103. doi:10.1063/1.4757928