1,550
Views
12
CrossRef citations to date
0
Altmetric
Article

The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm

, ORCID Icon, & ORCID Icon
Pages 287-298 | Received 21 Mar 2020, Accepted 15 Jul 2020, Published online: 30 Jul 2020

References

  • Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170 (2–3), 520–529. doi:10.1016/j.jhazmat.2009.05.039
  • Alahiane, S., Qourzal, S., El Ouardi, M., Abaamrane, A., & Assabbane, A. (2014). Factors influencing the photocatalytic degradation of reactive yellow 145 by TiO2-coated non-woven fibers. American Journal of Analytical Chemistry, 05(08), 445–454. doi:10.4236/ajac.2014.58053
  • Bansal, P., Singh, D., & Sud, D. (2010). Photocatalytic degradation of azo dye in aqueous TiO2 suspension: Reaction pathway and identification of intermediates products by LC/MS. Separation and Purification Technology, 72 (3), 357–365. doi:10.1016/j.seppur.2010.03.005
  • Barka, N., Qourzal, S., Assabbane, A., Nounah, A., & Ait-Ichou, Y. (2010). Photocatalytic degradation of an azo reactive dye, reactive yellow 84, in water using an industrial titanium dioxide coated media. Arabian Journal of Chemistry, 3 (4), 279–283. doi:10.1016/j.arabjc.2010.06.016
  • Bensouici, F., Souier, T., Dakhel, A. A., Iratni, A., Tala-Ighil, R., & Bououdina, M. (2015). Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film. Superlattices and Microstructures, 85, 255–265. doi:10.1016/j.spmi.2015.05.028
  • Chen, D., & Ray, A. K. (1998). Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Research, 32 (11), 3223–3234. doi:10.1016/S0043-1354(98)00118-3
  • D’Amato, C., Anna, R., Giovannetti, M., Zannotti, E., Rommozzi, M., Minicucci, R., … Di Cicco, (2018). Band gap implications on nano-TiO2 surface modification with ascorbic acid for visible light-active polypropylene coated photocatalyst. Nanomaterials, 8 (8), 599.
  • Das, S., & Srivastava, V. C. (2016). Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters. Photochemical & Photobiological Sciences, 15 (6), 714–730. doi:10.1039/c5pp00469a
  • de Sá, D. S., Vasconcellos, L. E., de Souza, J. R., Marinkovic, B. A., Del Rosso, T., Fulvio, D., … Pandoli, O. (2018). Intensification of photocatalytic degradation of organic dyes and phenol by scale-up and numbering-up of meso- and microfluidic TiO2 reactors for wastewater treatment. Journal of Photochemistry and Photobiology A: Chemistry, 364, 59–75. doi:10.1016/j.jphotochem.2018.05.020
  • Deepa, N., Meghna, P., & Kandasamy, S. (2014). Experimental studies on decolorisation of malachite dye using continuous photocatalytic reactor. International Research Journal of Environment Sciences, 3 (3), 14–21.
  • Deng, Q., Zhang, W., Lan, T., Xie, J., Xie, W., Liu, Z., … Wei, M. (2018). Anatase TiO2 quantum dots with a narrow band gap of 2.85 eV based on surface hydroxyl groups exhibiting significant photodegradation property. European Journal of Inorganic Chemistry, 2018 (13), 1506–1510. doi:10.1002/ejic.201800097
  • Fosso-Kankeu, E., Waanders, F., & Geldenhuys, M. (2015). Photocatalytic degradation of dyes using TiO2 nanoparticles of different shapes. Paper presented at the 7th International Conference on Latest Trends in Engineering & Technology 84–98. Pretoria (South Africa).
  • Gangu, K. K., Maddila, S., & Jonnalagadda, S. B. (2019). A review on novel composites of Mwcnts mediated semiconducting materials as photocatalysts in water treatment. The Science of the Total Environment, 646, 1398–1412. doi:10.1016/j.scitotenv.2018.07.375
  • Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56 (16), 1639–1657. doi:10.1007/s11434-011-4476-1
  • Habibi, M. H., Hassanzadeh, A., & Mahdavi, S. (2005). The effect of operational parameters on the photocatalytic degradation of three textile azo dyesi n aqueous TiO2 suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 172 (1), 89–96. doi:10.1016/j.jphotochem.2004.11.009
  • Harlapur, S. F., Rashmi, B. N., Nagaswarupa, H. P., Prashantha, S. C., Shashishekar, T. R., & Anil Kumar, M. R. (2017). Photocatalytic studies of TiO2 nanomaterials prepared via facile wet chemical route. Materials Today: Proceedings, 4(11), 11713–11719. doi:10.1016/j.matpr.2017.09.087
  • Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6 (4), 4676–4697. doi:10.1016/j.jece.2018.06.060
  • Kaur, S., & Singh, V. (2007a). TiO2 mediated photocatalytic degradation studies of reactive red 198 by UV irradiation. Journal of Hazardous Materials, 141 (1), 230–236. doi:10.1016/j.jhazmat.2006.06.123
  • Kaur, S., & Singh, V. (2007b). Visible light induced sonophotocatalytic degradation of reactive red dye 198 using dye sensitized TiO2. Ultrasonics Sonochemistry, 14 (5), 531–537. doi:10.1016/j.ultsonch.2006.09.015
  • Li, Y., Li, X., Li, J., & Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research, 40 (6), 1119–1126. doi:10.1016/j.watres.2005.12.042
  • Liang, F., Liu, W., Zhang, S., Zhang, B., & Han, X. (2020). Preparation and properties of anti-infrared transparent thermal-insulating film based on polymethyl methacrylate. Energy, 194, 116848. doi:10.1016/j.energy.2019.116848
  • Linden, K. G., & Mohseni, M. (2014). 2.8 – Advanced oxidation processes: Applications in drinking water treatment. In Satinder Ahuja (Ed.) Comprehensive water quality and purification (pp. 148–172). Waltham: Elsevier.
  • Liu, A.-L., Li, Z.-Q., Wu, Z.-Q., & Xia, X.-H. (2018). Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device. Talanta, 182, 544–548. doi:10.1016/j.talanta.2018.02.028
  • Mir, N. A., Khan, A., Dar, A., & Muneer, M. (2014). Photocatalytic study of two azo dye derivatives, Ponceau Bs and reactive blue 160 in aqueous suspension of TiO2: Adsorption isotherm and decolorization kinetics. International Journal of Innovative Research in Science, Engineering and Technology, 3 (2), 9333–9348.
  • Mohammed Redha, Z., Abdulla Yusuf, H., Ahmed, H. A., Fielden, P. R., Goddard, N. J., & Baldock, S. J. (2017). A miniaturized injection-moulded flow-cell with integrated conducting polymer electrodes for on-line electrochemical degradation of azo dye solutions. Microelectronic Engineering, 169, 16–23. doi:10.1016/j.mee.2016.11.016
  • Naeem, K., & Ouyang, F. (2013). Influence of supports on photocatalytic degradation of phenol and 4-chlorophenol in aqueous suspensions of titanium dioxide. Journal of Environmental Sciences, 25 (2), 399–404. doi:10.1016/S1001-0742(12)60055-2
  • Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151 (1–3), 10–18. doi:10.1016/j.cej.2009.02.026
  • Samsudin, E. M., Goh, S. N., Wu, T. Y., Ling, T. T., Hamid, S. B. A., & Juan, J. C. (2015). Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malaysiana, 44(7), 1011–1019. doi:10.17576/jsm-2015-4407-13
  • Sayılkan, F., Asiltürk, M., Tatar, P., Kiraz, N., Arpaç, E., & Sayılkan, H. (2007). Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for malachite green dye degradation under UV and Vis-lights. Journal of Hazardous Materials, 144 (1-2), 140–146. doi:10.1016/j.jhazmat.2006.10.011
  • Sriwong, C., Wongnawa, S., & Patarapaiboolchai, O. (2012). Rubber sheet strewn with TiO2 particles: Photocatalytic activity and recyclability. Journal of Environmental Sciences, 24 (3), 464–472. doi:10.1016/S1001-0742(11)60794-8
  • Stambolova, I., Shipochka, М., Blaskov, V., Loukanov, A., & Vassilev, S. (2012). Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye. Journal of Photochemistry and Photobiology. B, Biology, 117, 19–26. doi:10.1016/j.jphotobiol.2012.08.006
  • Suhadolnik, L., Pohar, A., Novak, U., Likozar, B., Mihelič, A., & Čeh, M. (2019). Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: Batch, microreactor and scaled-up operation. Journal of Industrial and Engineering Chemistry, 72, 178–188. doi:10.1016/j.jiec.2018.12.017
  • Szczepanik, B. (2017). Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Applied Clay Science, 141, 227–239. doi:10.1016/j.clay.2017.02.029
  • Tesana, S., Metha, G. F., Andersson, G. G., Ridings, C., & Golovko, V. (2018). Photocatalytic degradation of methylene blue dye using catalyst based on the gold-containing clusters supported on TiO2. International Journal of Nanotechnology, 15 (8/9/10), 669–675. doi:10.1504/IJNT.2018.098432
  • Vu, T. A., Dao, C. D., Hoang, T. T. T., Le, G. H., Nguyen, K. T., Dang, P. T., … Nguyen, T. V. (2013). Study on photocatalytic activity of TiO2 and nonmetal doped TiO2 in rhodamine B degradation under visible light irradiation. International Journal of Nanotechnology, 10 (3/4), 235–246. doi:10.1504/IJNT.2013.053137
  • Yusuf, H. A., Redha, Z. M., Al Meshal, A. J., & Shehab, H. J. (2018). Experimental and mathematical modelling of reactive dyes decolorization using fenton oxidation process in a microfluidic system. Desalination and Water Treatment, 116, 305–316. doi:10.5004/dwt.2018.22534
  • Zhang, X., Wang, Y., & Li, G. (2005). Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst. Journal of Molecular Catalysis A: Chemical, 237 (1–2), 199–205. doi:10.1016/j.molcata.2005.03.043
  • Zhiyong, Y., Laub, D., Bensimon, M., & Kiwi, J. (2008). Flexible polymer TiO2 modified film photocatalysts active in the photodegradation of azo-dyes in solution. Inorganica Chimica Acta, 361(3), 589–594. doi:10.1016/j.ica.2007.05.062