915
Views
8
CrossRef citations to date
0
Altmetric
Article

Effects of nonlocality and two temperature in a nonlocal thermoelastic solid due to ramp type heat source

& ORCID Icon
Pages 358-364 | Received 08 Mar 2020, Accepted 02 Sep 2020, Published online: 29 Sep 2020

References

  • Abbas, I. A. (2014). Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory. Journal of Mechanical Science and Technology, 28(10), 4193–4198. doi:10.1007/s12206-014-0932-6
  • Abbas, I. A. (2016). Eigenvalue approach to fractional order thermoelasticity for an infinite body with a spherical cavity. Journal of the Association of Arab Universities for Basic and Applied Sciences, 20(1), 84–88. doi:10.1016/j.jaubas.2014.11.001
  • Abbas, I. A., & Youssef, H. M. (2009). Finite element analysis of two-temperature generalized magneto-thermoelasticity. Archive of Applied Mechanics, 79(10), 917–925. doi:10.1007/s00419-008-0259-9
  • Abbas, I. A., & Youssef, H. M. (2013). Two-temperature generalized thermoelasticity under ramp-type heating by finite element method. Meccanica, 48(2), 331–339. doi:10.1007/s11012-012-9604-8
  • Abdel-Khalek, S., Abo-Dahab, S. M., Ragab, M., Ahmad, H., & Rawa, M. (2020). Engineering entanglement, geometric phase and quantum Fisher information of a three-level system with energy dissipation. Mathematical Methods in the Applied Sciences. doi:10.22541/au.159144130.08996694.
  • Abo‐Dahab, S. M., Abouelregal, A. E., & Ahmad, H. (2020). Fractional heat conduction model with phase lags for a half‐space with thermal conductivity and temperature dependent. Mathematical Methods in the Applied Sciences. 10.1002/mma.6764.
  • Abouelregal, A., & Ahmad, H. (2020). A modified thermoelastic fractional heat conduction model with a single-lag and two different fractional-orders. Journal of Applied and Computational Mechanics. doi:10.22055/jacm.2020.33790.2287
  • Artan, R. (1996). Nonlocal elastic half plane loaded by a concentrated force. International Journal of Engineering Science, 34(8), 943–950. doi:10.1016/0020-7225(95)00132-8
  • Bachher, M., & Sarkar, N. (2018). Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Waves in Random and Complex Media, 29(4), 595–613. doi:10.1080/17455030.2018.1457230.
  • Carrera, E., Abouelregal, A. E., Abbas, I. A., & Zenkour, A. M. (2015). Vibrational analysis for an axially moving microbeam with two temperatures. Journal of Thermal Stresses, 38(6), 569–590. doi:10.1080/01495739.2015.1015837
  • Chen, P. J., & Gurtin, M. E. (1968). On a theory of heat conduction involving two temperatures. Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 19(4), 614–627. doi:10.1007/BF01594969
  • Chen, S. J., Lin, J. N., & Wang, Y. Y. (2019). Soliton solutions and their stabilities of three (2 + 1)-dimensional PT-symmetric nonlinear Schro¨ dinger equations with higher-order diffraction and nonlinearities. Optik, 194, 162753. doi:10.1016/j.ijleo.2019.04.099
  • Edelen, D. G. B., & Laws, N. (1971). On the thermodynamics of systems with nonlocality. Archive for Rational Mechanics and Analysis, 43(1), 24–35. doi:10.1007/BF00251543
  • Edelen, D. G. B., Green, A. E., & Laws, N. (1971). Nonlocal continuum mechanics. Archive for Rational Mechanics and Analysis, 43(1), 36–44. doi:10.1007/BF00251544
  • Eringen, A. C. (2002). Nonlocal continuum field theories. New York: Springer.
  • Eringen, A. C., & Edelen, D. G. B. (1972). On nonlocal elasticity. International Journal of Engineering Science, 10(3), 233–248. doi:10.1016/0020-7225(72)90039-0
  • Ezzat, M. A., & El-Bary, A. A. (2017). A functionally graded magnetothermoelastic half space with memory-dependent derivatives heat transfer. Steel and Composite Structures, 25(2), 177–186.
  • Ezzat, M. A., El-Karamany, A. S., & El-Bary, A. A. (2018). Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase lag heat transfer. Microsystem Technologies, 24(2), 951–961. doi:10.1007/s00542-017-3425-6
  • Ezzat, M., & Ai-Bary, A. A. (2017). Fractional magneto-thermoelastic materials with phase lag Green-Naghdi theories. Steel and Composite Structures, 24(3), 297–307.
  • Ezzat, M., El-Karamany, A., & El-Bary, A. (2016a). Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mechanics of Advanced Materials and Structures, 23(5), 545–553. doi:10.1080/15376494.2015.1007189
  • Ezzat, M., El-Karamany, A., & El-Bary, A. (2016b). Magneto-thermoelasticity with two fractional order heat transfer. Journal of the Association of Arab Universities for Basic and Applied Sciences, 19(1), 70–79. doi:10.1016/j.jaubas.2014.06.009
  • Ezzat, M.A., & El-Bary, A.A. (2016). Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature. International Journal of Applied Electromagnetics and Mechanics, 50(4), 549–567. doi:10.3233/JAE-150131
  • Fang, J. J., & Dai, C. Q. (2020). Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation. Optik, 209, 164574. doi:10.1016/j.ijleo.2020.164574
  • Hassan, M., Marin, M., Ellahi, R., & Alamri, S. Z. (2018). Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transfer Research, 49(18), 1837–1848. doi:10.1615/HeatTransRes.2018025569
  • Honig, G., & Hirdes, U. (1984). A method for the numerical inversion of Laplace transform. Journal of Computational and Applied Mathematics, 10(1), 113–132. doi:10.1016/0377-0427(84)90075-X
  • Khetir, H., Bouiadjra, M. B., Houari, M. S. A., Tounsi, A., & Mahmoud, S. R. (2017). A new nonlocal trigonometric shear deformation theory for thermal buckling analysus of embedded nanosize FG plates. Structural Engineering and Mechanics, 64(4), 391–402.
  • Kroner, E. (1967). Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures, 3, 731–742.
  • Kumar, R., Sharma, N., & Lata, P. (2016a). Effects of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force. Structural Engineering and Mechanics, 57(1), 91–103. doi:10.12989/sem.2016.57.1.091
  • Kumar, R., Sharma, N., & Lata, P. (2016b). Thermomechanical interactions in the transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures. Applied Mathematical Modelling, 40(13–14), 6560–6575. doi:10.1016/j.apm.2016.01.061
  • Lata, P. (2018a). Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium. Structural Engineering and Mechanics, 66(1), 113–124.
  • Lata, P. (2018b). Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium. Steel and Composite Structures, 27(2), 439–451.
  • Lata, P., & Singh, S. (2019). Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load. Steel and Composite Structures, 33(1), 123–131.
  • Lata, P., & Singh, S. (2020a). Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force. Geomechanics and Engineering, 22(2), 109–117.
  • Lata, P., & Singh, S. (2020b). Time harmonic interactions in nonlocal thermoelastic solid with two temperatures. Structural Engineering and Mechanics, 74(3), 341–350.
  • Marin, M. (1997). An uniqueness result for body with voids in linear thermoelasticity. Rendiconti di Matematica Roma, 17(7), 103–113.
  • Marin, M., & Craciun, E. M. (2017). Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. Composites Part B: Engineering, 126, 27–37. doi:10.1016/j.compositesb.2017.05.063
  • Marin, M., & Nicaise, S. (2016). Existence and stability results for thermoelastic dipolar bodies with double porosity. Continuum Mechanics and Thermodynamics, 28(6), 1645–1657. doi:10.1007/s00161-016-0503-4
  • Marin, M., Baleanu, D., & Vlase, S. (2017). Effect of microtemperatures for micropolar thermoelastic bodies. Structural Engineering and Mechanics, 61(3), 381–387. doi:10.12989/sem.2017.61.3.381
  • Paola, M., Failla, G., & Zingales, M. (2010). The mechanically based approach to 3D non-local linear elasticity theory: Long-range central interactions. International Journal of Solids and Structures, 47(18–19), 2347–2358. doi:10.1016/j.ijsolstr.2010.02.022
  • Polizzotto, C. (2001). Nonlocal elasticity and related variational principles. International Journal of Solids and Structures, 38(42–43), 7359–7380. doi:10.1016/S0020-7683(01)00039-7
  • Press, W. H., Teukolshy, S. A., Vellerling, W. T., & Flannery, B. P. (1986). Numerical recipes in Fortran. Cambridge: Cambridge University Press.
  • Simsek, M. (2011). Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory. Steel & Composite Structures, 11(1), 59–76. doi:10.12989/scs.2011.11.1.059
  • Vasiliev, V. V., & Lurie, S. A. (2016). On correct nonlocal generalized theories of elasticity. Physical Mesomechanics, 19(3), 259–269. doi:10.1134/S102995991603005X
  • Wang, B. H., Lu, P. H., Dai, C. Q., & Chen, Y. X. (2020). Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation. Results in Physics, 17, 103036. doi:10.1016/j.rinp.2020.103036
  • Wang, J., & Dhaliwal, R. S. (1993). On some theorems in the nonlocal theory of micropolar elasticity. International Journal of Solids and Structures, 30(10), 1331–1338. doi:10.1016/0020-7683(93)90215-S
  • Wu, G. Z., & Dai, C. Q. (2020). Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrodinger equation. Applied Mathematics Letters, 106, 106365. doi:10.1016/j.aml.2020.106365
  • Youssef, H. M. (2006). Theory of two-temperature-generalized thermoelasticity. IMA Journal of Applied Mathematics, 71(3), 383–390. doi:10.1093/imamat/hxh101
  • Youssef, H. M., & Al-Lehaibi, E. A. (2010). Fractional order generalized thermoelastic half-space subjected to ramp-type heating. Mechanics Research Communications, 37(5), 448–452. doi:10.1016/j.mechrescom.2010.06.003
  • Zenkour, A. M., & Abbas, I. A. (2014). A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties. International Journal of Mechanical Sciences, 84, 54–60. doi:10.1016/j.ijmecsci.2014.03.016