1,068
Views
8
CrossRef citations to date
0
Altmetric
Article

Effect of heat source/sink on MHD start-up natural convective flow in an annulus with isothermal and isoflux boundaries

, &
Pages 365-374 | Received 19 Feb 2020, Accepted 19 Sep 2020, Published online: 05 Oct 2020

References

  • Ajibade, A. O., & Gambo, J. J. (2019). Adomian decomposition method to magnetohydrodynamics natural convection heat generating/absorbing slip flow through a porous medium. Multidiscipline Modeling in Materials and Structures, 15(3), 673–684. doi:10.1108/MMMS-08-2018-0153
  • Alshabanat, A., Jleli, M., Kumar, S., & Samet, B. (2020). Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits. Frontier in Physics, 8(64), 1–10.
  • Baag, S., Mishra, S. R., & Nayak, B. (2017). Buoyancy effects on free convective MHD flow in the presence of heat source/sink. Modelling, Measure and Control B, 86, 14–32.
  • Baag, S., Mishra, S. R., & Samantray, B. L. (2017). Buoyancy effects on free convective MHD flow in the presence of heat source/sink. AMSE JOURNALS-AMSE IIETA Modelling B, 86(1), 14–32.
  • Baleanu, D., Jleli, M., Kumar, S., & Samet, B. (2020). A fractional derivative with two singular kernels and application to a heat conduction problem. Advances in Difference Equations, 2020(1), 252. doi:10.1186/s13662-020-02684-z
  • Banerjee, A. K., Kumar, A. V., & Kumaran, V. (2011). Unsteady MHD flow past a stretching sheet due to a heat source/sink. In A. Luo, J. Machado, & D. Baleanu (Eds.), Dynamical systems and methods (pp. 291–299). New York, NY: Springer.
  • Chamkha, A. J., & Al-Rashidi, S. S. (2010). Analytical solutions for hydromagnetic natural convection flow of a particulate suspension through isoflux–isothermal channels in the presence of a heat source or sink. Energy Conversion and Management, 51(4), 851–858. doi:10.1016/j.enconman.2009.11.021
  • Chamkha, A. J., Rashad, A. M., Mansour, M. A., Armaghani, T., & Ghalambaz, M. (2017). Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip. Physics of Fluids, 29(5), 052001. doi:10.1063/1.4981911
  • Couette, M. (1890). Effect of viscous incompressible fluid flow in concentric annuli. Annales de Chimie et de Physique, 21(6), 433–510.
  • Das, S., Sarkar, B. C., & Jana, R. N. (2012). Radiation effects on free convection MHD Couette flow started exponentially with variable wall temperature in presence of heat generation. Open Journal of Fluid Dynamics, 2(1), 14–27. doi:10.4236/ojfd.2012.21002
  • Gupta, A. S. (1960). Steady and transient free convection of an electrically conducting fluid from a vertical plate in the presence of a magnetic field. Applied Scientific Research, 9(1), 319–333. doi:10.1007/BF00382210
  • Gupta, S., Kumar, D., & Singh, J. (2020). Analytical study for MHD flow of Williamson nanofluid with the effects of variable thickness, nonlinear thermal radiation and improved Fourier’s and Fick’s Laws. SN Applied Sciences, 2(3), 1–12. doi:10.1007/s42452-020-1995-x
  • Ibrahim, S. M., & Suneetha, K. (2016). Heat source and chemical effects on MHD convection flow embedded in a porous medium with Soret, viscous and Joules dissipation. Ain Shams Engineering Journal, 7(2), 811–818. doi:10.1016/j.asej.2015.12.008
  • Jha, B. K., Aina, B., & Isa, S. (2015). Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution. Journal of King Saud University - Science, 27(3), 253–259. doi:10.1016/j.jksus.2014.12.002
  • Jha, B. K., & Odengle, J. O. (2015). Unsteady Couette flow in a composite channel partially filled with porous material: A semi-analytical approach. Transport in Porous Media, 107(1), 219–234. doi:10.1007/s11242-014-0434-0
  • Jha, B. K., & Odengle, J. O. (2016). A semi-analytical solution for start-up flow in an annulus partially filled with porous material. Transport in Porous Media, 114(1), 49–16. doi:10.1007/s11242-016-0724-9
  • Jha, B. K., & Yusuf, T. S. (2016). Transient free convective flow in an annular porous medium: A semi-analytical approach. Engineering Science and Technology. An International Journal, 19(4), 1936–1948.
  • Jha, B. K., & Yusuf, T. S. (2017a). MHD transient free convection flow in vertical concentric annulus with isothermal and adiabatic boundaries. International Journal of Engineering and Technologies, 11, 40–52. doi:10.18052/www.scipress.com/IJET.11.40
  • Jha, B. K., & Yusuf, T. S. (2017b). Transient-free convective flow with heat generation/absorption in an annular porous medium: A semi-analytical approach. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 232(5), 599–612.
  • Kalita, B. (2012). Unsteady free convection MHD flow and heat transfer between two heated vertical plates with heat source: An exact solution. Journal of Applied Mathematics and Bioinformatics, 2(3), 1–15.
  • Kumar, D., & Singh, A. K. (2015). Effect of induced magnetic field on natural convection with Newtonian heating/cooling in vertical concentric annuli. Procedia Engineering Journal, 127, 568–574. doi:10.1016/j.proeng.2015.11.346
  • Kumar, D., & Singh, A. K. (2016). Effects of heat source/sink and induced magnetic field on natural convective flow in vertical concentric annuli. Alexandria Engineering Journal, 55(4), 3125–3133. doi:10.1016/j.aej.2016.08.019
  • Kumar, D., & Singh, A. K. (2018). Effect of Newtonian heating/cooling on hydromagnetic free convection in alternate conducting vertical concentric annuli. In M. Singh, B. Kushvah, G. Seth, & J. Prakash (Eds.), Applications of fluid dynamics. Lecture notes in mechanical engineering (pp. 191–206). Singapore: Springer.
  • Kumar, D., Singh, A. K., & Kumar, D. (2018). Effect of Hall current on the magnetohydrodynamic free convective flow between vertical walls with induced magnetic field. European Physical Journal Plus, 133(207), 1–10.
  • Kumar, D., Singh, A. K., & Kumar, D. (2020). Influence of heat source/sink on MHD flow between vertical alternate conducting walls with Hall effect. Physica A: Statistical Mechanics and Its Applications, 544, 123562. doi:10.1016/j.physa.2019.123562
  • Kumar, D., Singh, A. K., & Sarveshanand, M. (2017). Effect of Hall current and wall conductance on hydromagnetic natural convection flow between vertical walls. International Journal of Industrial Mathematics, 9(4), 289–299.
  • Kumar, S., Ghosh, S., Lotayif, M. S. M., & Samet, B. (2020). A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator. Alexandria Engineering Journal, 59(3), 1435–1449. doi:10.1016/j.aej.2020.04.019
  • Kumar, S., Ghosh, S., Samet, B., & Goufo, E. F. D. (2020). An analysis for heat equations arises in diffusion process using new Yang‐Abdel‐Aty‐Cattani fractional operator. Mathematical Methods in the Applied Sciences, 43(9), 6062–6080. doi:10.1002/mma.6347
  • Kumar, S., Kumar, A., Abbas, S., Al Qurashi, M., & Baleanu, D. (2020). A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations. Advances in Difference Equations, 2020(1), 28. doi:10.1186/s13662-019-2488-3
  • Kumar, S., Kumar, A., Odibat, Z., Aldhaifallah, M., & Nisar, K. S. (2020). A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow. AIMS Mathematics, 5(4), 3035–3055. doi:10.3934/math.2020197
  • Kumar, S., Kumar, R., Agarwal, R. P., & Samet, B. (2020). A study of fractional Lotka‐Volterra population model using Haar wavelet and Adams‐Bashforth‐Moulton methods. Mathematical Methods in the Applied Sciences, 43(8), 5564–5578. doi:10.1002/mma.6297
  • Kumar, S., Kumar, R., Cattani, C., & Samet, B. (2020). Chaotic behaviour of fractional predator-prey dynamical system. Chaos, Solitons & Fractals, 135, 109811. doi:10.1016/j.chaos.2020.109811
  • Kumar, S., Nisar, K. S., Kumar, R., Cattani, C., & Samet, B. (2020). A new Rabotnov fractional‐exponential function‐based fractional derivative for diffusion equation under external force. Mathematical Methods in Applied Sciences, 43(7), 4460–4471.
  • Makinde, O. D., Khan, Z. H., Ahmad, R., Haq, R. U., & Khan, W. A. (2019). Unsteady MHD Flow in a porous channel with thermal radiation and heat source/sink. International Journal of Applied and Computational Mathematics, 5(3), 59. doi:10.1007/s40819-019-0644-9
  • Modather, M., Rashad, A. M., & Chamkha, A. J. (2009). An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turkish Journal of Engineering and Environmental Sciences, 33, 245–257.
  • Nagaraju, G., Garvandha, M., & Ramana Murthy, J. V. (2019). MHD flow in a circular horizontal pipe under heat source/sink with suction/injection on wall. Frontiers in Heat and Mass Transfer, 13(6), 1–8. doi:10.5098/hmt.13.6
  • Nayak, M. K., Dash, G. C., & Singh, L. P. (2014). Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity. International Journal of Heat and Mass Transfer, 79, 1087–1095. doi:10.1016/j.ijheatmasstransfer.2014.08.057
  • Odibat, Z., & Kumar, S. (2019). A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equations. Journal of Computational and Nonlinear Dynamics, 14(8), 081004. doi:10.1115/1.4043617
  • Raju, M. C., Ananda Reddy, N., & Varma, S. V. K. (2014). Analytical study of MHD free convective, dissipative boundary layer flow past a porous vertical surface in the presence of thermal radiation, chemical reaction and constant suction. Ain Shams Engineering Journal, 5(4), 1361–1369. doi:10.1016/j.asej.2014.07.005
  • Reddy, P. B., Suneetha, S., & Reddy, N. B. (2017). Numerical study of magnetohydrodynamics (MHD) boundary layer slip flow of a Maxwell nanofluid over an exponentially stretching surface with convective boundary condition. Propulsion and Power Research, 6(4), 259–268. doi:10.1016/j.jppr.2017.11.002
  • Son, J. H., & Park, I. S. (2017). Numerical study of MHD natural convection in a rectangular enclosure with an insulated block. Numerical Heat Transfer, Part A: Applications, 71(10), 1004–1022. doi:10.1080/10407782.2017.1330090
  • Tzou, D. Y. (1997). Macro to microscale heat transfer: The lagging behavior. London: Taylor and Francis.
  • Veeresha, P., Prakasha, D. G., & Kumar, S. (2020). A fractional model for propagation of classical optical solitons by using nonsingular derivative. Mathematical Methods in the Applied Sciences, 1–15. doi:10.1002/mma.6335
  • Yadav, S. L., Kumar, D., & Singh, A. K. (2019). Magnetohydrodynamic flow in flow in horizontal concentric cylinders. International Journal of Industrial Mathematics, 11(2), 89–98.
  • Yusuf, T. S. (2017). Exact solution of an MHD natural convection flow in vertical concentric annulus with heat absorption. International Journal of Fluid Mechanics & Thermal Sciences, 3(5), 52–61.
  • Yusuf, T. S., & Gambo, D. (2019). Impact of heat generation/absorption on transient natural convective flow in an annulus filled with porous material subject to isothermal and adiabatic boundaries. GEM - International Journal on Geomathematics, 10(20), 1–16.
  • Yusuf, T. S., & Gambo, D. (2020). Role of heat source/sink on time dependent free convective flow in a coaxial cylinder filled with porous material: A semi analytical approach. International Journal of Applied Power Engineering, 8(1), 67–77.
  • Yusuf, T. S., & Jha, B. K. (2018). A semi-analytical solution for time-dependent natural convection flow with heat generation/absorption in an annulus partially filled with porous material. Multidiscipline Modeling in Materials and Structures, 14(5), 1042–1023. doi:10.1108/MMMS-01-2018-0003
  • Yusuf, T. S., & Oni, M. O. (2018). Entropy generation under the influence of radial magnetic field and viscous dissipation of generalized Couette flow in an annulus. Propulsion and Power Research, 7(4), 342–352. doi:10.1016/j.jppr.2018.11.005