2,186
Views
22
CrossRef citations to date
0
Altmetric
Review Article

A review on primary synthesis and secondary treatment of aluminium matrix composites

ORCID Icon, , &
Pages 389-405 | Received 01 Jul 2020, Accepted 26 Sep 2020, Published online: 13 Oct 2020

References

  • Ajide, O. O., Oluwole, O. O., Abu, R., & Petinrin, M. O. (2016). Microstructural characteristics of aluminum based composites developed by liquid metallurgy route: An overview. Int J Eng Technol, 6, 405–415.
  • Alaneme, K. K., Bodunrin, M. O., & Awe, A. A. (2018). Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal of King Saud UniversityEngineering Sciences, 30(1), 96–103. doi:10.1016/j.jksues.2016.01.001
  • Alaneme, K. K., Eze, H. I., & Bodunrin, M. O. (2015). Corrosion behaviour of groundnut shell ash and silicon carbide hybrid reinforced Al–Mg–Si alloy matrix composites in 3.5% NaCl and 0.3M H2SO4 solutions. The Leonardo Electronic Journal of Practices and Technologies, 14, 141–158.
  • Al-Fadhalah, K. J., Almazrouee, A. I., & Aloraier, A. S. (2014). Microstructure and mechanical properties of multi-pass friction stir processed Aluminum Alloy 6063. Materials and Design, 53, 550–560. doi:10.1016/j.matdes.2013.07.062
  • Anjan, B. N., & Kumar, P. G. V. (2018). Microstructure and mechanical properties of ZA27 based SiC reinforced composite processed by multi directional forging. Materials Research Express, 1–19. doi:10.1088/2053-1591/aadb02.
  • Arora, G., & Sharma, S. (2018). A comparative study of AA6351 mono-composites reinforced with synthetic and agro waste reinforcement. International Journal of Precision Engineering and Manufacturing, 19(4), 631–638. doi:10.1007/s12541-018-0076-1
  • Aweda, J. O., Orhadahwe, T. A., & Ohijeagbon, I. O. (2018). Rapid cyclic heating of mild steel and its effects on microstructure and mechanical properties. IOP Conference Series: Materials Science and Engineering, 413, 012016. doi:10.1088/1757-899X/413/1/012016
  • Awotunde, M. A., Adegbenjo, A. O., Obadele, B. A., Okoro, M., Shongwe, B. M., & Olubambi, P. A. (2019). Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review. Journal of Materials Research and Technology, 8(2), 2432–2449. doi:10.1016/j.jmrt.2019.01.026
  • Babalola, P. O., Bolu, C. A., Inegbenebor, A. O., & Odunfa, K. M. (2014). Development of Aluminium Matrix Composites: A review. Online International Journal of Engineering Technology Research, 2, 1–11.
  • Bahrami, A., Soltani, N., Pech-Canul, M. I., & Gutiérrez, C. A. (2016). Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Critical Reviews in Environmental Science and Technology, 46(2), 143–207. doi:10.1080/10643389.2015.1077067
  • Barekar, N., Tzamtzis, S., Dhindaw, B. K., Patel, J., Hari Babu, N., & Fan, Z. (2009). Processing of aluminium-graphite particulate metal matrix composites by advanced shear technology. Journal of Materials Engineering and Performance, 18(9), 1230–1240. doi:10.1007/s11665-009-9362-5
  • Bembalge, O. B., & Panigrahi, S. K. (2018). Development and strengthening mechanisms of bulk ultrafine grained AA6063/SiC composite sheets with varying reinforcement size ranging from nano to micro domain. Journal of Alloys and Compounds., 766, 355–372. doi:10.1016/j.jallcom.2018.06.306
  • Bembalge, O. B., & Panigrahi, S. K. (2019). Aging behavior of ultrafine-grained AA6063/SiC composites with varying reinforcement sizes. Materials Science and Engineering: A, 768, 138482. doi:10.1016/j.msea.2019.138482
  • Bhoi, N. K., Singh, H., & Pratap, S. (2019). Review: Developments in the aluminium metal matrix composites reinforced by micro/nano particles – a review. Journal of Composite Materials, 0, 1–21. 10.1177/0021998319865307.
  • Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39. doi:10.1590/S1516-14392009000100002
  • Canute, X., & Majumder, M. C. (2018). Mechanical and tribological behaviour of stir cast aluminium/boron carbide/fly ash composites. J Eng Sci Technol, 13, 755–777.
  • Chen, G., Chang, H., Sun, J., Wang, B., Yang, L., & Zhang, J. (2020). Microstructures and properties of graphite nanoflake/6061Al matrix composites fabricated via spark plasma sintering. Journal of Materials Engineering and Performance, 29, 1235–1244. doi:10.1007/s11665-020-04676-2
  • Chen, C. L., & Lin, C. H. (2017). A study on the aging behavior of al6061 composites reinforced with Y2O3 and TiC. Metals (Metals), 7(1),1–8. doi:10.3390/met7010011
  • Chidambaram, A., Balasivanandha Prabu, S., & Padmanabhan, K. A. (2019). Microstructure and mechanical properties of AA6061–5wt. %TiB2 in-situ metal matrix composite subjected to equal channel angular pressing. Materials Science and Engineering: A, 759, 762–769. doi:10.1016/j.msea.2019.05.068
  • Chin, W. H. A., Koav, S. C., Chan, M. Y., Yeow, T. K., & Pang, M. M. (2020). Preparation and characterization of composites made from chrysanthemum waste using resin. AIP Conf Proc, 2233(1). doi:10.1063/5.0001338
  • Dhinakaran, S., & Moorthy, T. V. (2014). Effect of weight percentage on mechanical properties of boron carbid particulate reinforced aluminium matrix composites. Applied Mechanics and Materials, 612, 151–155. doi:10.4028/www.scientific.net/AMM.612.151
  • Dobrzanski, A. W.-F., Kremzer, L. A., & Adamiak, M. (2008). M. Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles. Journal of Achievements in Materials and Manufacturing Engineering, 27, 99–102.
  • Donald, A. O., Hassan, M. A., Hamza, S., Garba, E., Dangtim, D. K., & Mamad, M. (2018). Development and characterisation of aluminum composites reinforced with carbonized coconut shell and silicon carbide particle for automobile piston application. Global Scientific Journals, 6, 390–398.
  • Ebhota, W. S., & Jen, T.-C. (2018). Casting and applications of functionally graded metal matrix composites. Advanced Casting Technologies, 60–86. doi:10.5772/intechopen.71225.
  • Ebrahimi, M., Konaganti, V. K., Moradi, S., Doufas, A. K., & Hatzikiriakos, S. G. (2016). Slip of polymer melts over micro/nano-patterned metallic surfaces. Soft Matter, 12(48), 9759–9768. doi:10.1039/c6sm02235a
  • Ekambaram, S., & Murugan, N. (2015). Synthesis and characterization of aluminium alloy AA6061-Aluminal metal matrix composite. International Journal of Current Engineering and Technology, 5, 3211–3216.
  • El-Labban, H. F., Abdelaziz, M., & Mahmoud, E. R. I. (2014). Coating of 6028 aluminum alloy using aluminum piston alloy and Al–Si alloy-based nanocomposites produced by the addition of Al-Ti5-B1 to the matrix melt. Metallurgical and Materials Transactions B, 45(5), 1608–1614. doi:10.1007/s11663-014-0081-4
  • Etter, T., Kuebler, J., Frey, T., Schulz, P., Löffler, J. F., & Uggowitzer, P. J. (2004). Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process. Materials Science and Engineering: A, 386(1-2), 61–67. doi:10.1016/j.msea.2004.06.066
  • Ghosh, S. K., & Saha, P. (2011). Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process. Materials and Design, 32(1), 139–145. doi:10.1016/j.matdes.2010.06.020
  • Gomez, L., Busquets-Mataix, D., Amigo, V., & Salvador, M. D. (2009). Analysis of boron carbide aluminium matrix composites. Journal of Composite Materials., 43(9), 987–995. doi:10.1177/0021998308097731
  • Gopal, K. U. B., Sreenivas, R. K. V., & Vasudeva, B. (2013). Effect of boron carbide reinforcement on aluminium matrix composites. International Journal of Metallurgy and Materials Science Engineering, 3, 41–48.
  • Gowrishankar, T. P., Manjunatha, L. H., & Sangmesh, B. (2019). Mechanical and wear behaviour of Al6061 reinforced with graphite and TiC hybrid MMCs. Material Research Innovations, 24 doi:10.1080/14328917.2019.1628497.
  • Goyal, K., & Marwaha, K. (2016). Processing and properties of aluminium matrix composites: A short review. European Journal of Advances in Engineering and Technology, 3, 54–59.
  • Gupta, P. K., & Srivastava, R. K. (2018). Fabrication of ceramic reinforcement aluminium and its alloys metal matrix composite materials: A review. Materials Today: Proceedings, 5(9), 18761–18775. doi:10.1016/j.matpr.2018.06.223
  • Hanamantraygouda, M. B., & Shivakumar, B. P. (2015). Effect of forging condition on mechanical properties of Al/SiC metal matrix composites. International Journal of Engineering Research and Technology, 4AD(5), 567–571.
  • Harish, P., Srikanth, V. M., Babu, P. R., & Sastry, M. R. C. (2019). Characterization of mechanical and tribological properties of aluminium alloy based hybrid composites reinforced with cotton shell ash and silicon carbide. International Journal of Latest Engineering Science, 2, 1–15.
  • Hatti, S. P., Murthy, K. N., & Somanakatti, A. B. (2019). Microstructure and hardness behaviour study of carbon nanotube in aluminium nanocomposites. Smart Innovation, Systems and Technologies, 169, 421–428.
  • Hussain, M. Z., Khan, U., Chanda, A. K., & Jangid, R. (2017). Fabrication and hardness analysis of F-MWCNTs reinforced aluminium nanocomposite. Procedia Engineering, 173, 1611–1618. doi:10.1016/j.proeng.2016.12.262
  • Hussain, M. Z., Khan, S., & Sarmah, P. (2020). Optimization of powder metallurgy processing parameters of Al2O3/Cu composite through Taguchi method with Grey relational analysis. Journal of King Saud University - Engineering Sciences, 32(4), 274–286. doi:10.1016/j.jksues.2019.01.003
  • Hussain, M., Rao, P. N., Singh, D., & Jayaganthan, R. (2018). Precipitation hardening behaviour of Al-Mg-Si alloy processed by cryorolling and room temperature rolling. Materials Research Express., 5(4) 1–19. :
  • Ikubanni, P. P., Oki, M., & Adeleke, A. A. A. (2020). review of ceramic/bio-based hybrid reinforced aluminium matrix composites. Cogent Engineering, 7, 1727167.
  • Ipekoglu, M., Nekouyan, A., Albayrak, O., & Altintas, S. (2017). Mechanical characterization of B4C reinforced aluminum matrix composites produced by squeeze casting. Journal of Materials Research, 32(3), 599–605. doi:10.1557/jmr.2016.495
  • Jims John Wessley, G., Srinivas, M. D. S., & Ali, M. D. (2019). Preparation and characterization of an aluminium 6061 alloy based metal matrix composite. International Journal of Engineering and Advanced Technology, 8, 113–116.
  • Jaseem, I., Immanuel, R. J., Rao, P. N., Khan, F., Sahoo, B. N., & Panigrahi, S. K. (2018). Synergetic effect of cryorolling and postroll aging on simultaneous increase in wear resistance and mechanical properties of an Al–Cu alloy. Journal of Tribology., 140, 1–11. doi:10.1115/1.4040162.
  • Joseph, O. O., & Babaremu, K. O. (2019). Agricultural waste as a reinforcement particulate for aluminum metal matrix composite (AMMCs): A review. Fibers, 7(4), 33. doi:10.3390/fib7040033
  • Joshi, A., Yogesha, K. K., Kumar, N., & Jayaganthan, R. (2016). Influence of annealing on microstructural evolution, precipitation sequence, and fracture toughness of cryorolled Al–Cu–Si alloy. Metallography, Microstructure, and Analysis, 5(6), 540–556. doi:10.1007/s13632-016-0313-x
  • Kahlani, B., & Jafarzadeh, H. (2020). Microstructure and mechanical properties of aluminium/copper composite rod fabricated by axisymmetric spiral extrusion. Transactions of the Indian Institute of Metals, 73(3), 515–520. doi:10.1007/s12666-020-01869-0
  • Kale, V. C. (2015). Aluminium based metal matrix composites for aerospace application: A literature review. IOSR J Mech Civ Eng, 12, 2278–1684. doi:10.9790/1684-12653136.
  • Kallip, K., Babu, N. K., AlOgab, K. A., Kollo, L., Maeder, X., Arroyo, Y., & Leparoux, M. (2017). Microstructure and mechanical properties of near net shaped aluminium/alumina nanocomposites fabricated by powder metallurgy. Journal of Alloys and Compounds, 714, 133–143. doi:10.1016/j.jallcom.2017.04.233
  • Kar, C., & Surekha, B. (2020). Characterisation of aluminium metal matrix composites reinforced with titanium carbide and red mud. Material Research Innovations, 24, 1-10. doi:10.1080/14328917.2020.1735683.
  • Keshavamurthy, R., Sudhan, J. M., Gowda, N., & Krishna, R. A. (2016). Effect of thermo-mechanical processing and heat treatment on the tribological characteristics of al based MMC’s. iop Conference Series: Materials Science and Engineering, 149, 012118. doi:10.1088/1757-899X/149/1/012118
  • Khan, M., Syed, W. H., Ud-Din, R., Akhtar, S., & Aune, R. E. (2019). Spark plasma sintering of boron carbide reinforced aluminium alloy (Al6061) matrix composites. Proc. 16th Int. Bhurban Conf. Appl. Sci. Technol. Islam. Pakistan, 35–41.
  • Khan, M., Zulfaqar, M., Ali, F., & Subhani, T. (2017). Hybrid aluminium matrix composites containing boron carbide and quasicrystals: Manufacturing and characterisation. Materials Science Technology., 33, 1–9 doi:10.1080/02670836.2017.1342017.
  • Khodabakhshi, F., Gerlich, A. P., & Worswick, M. (2018). Fabrication and characterization of a high strength ultra-fine grained metal-matrix AA8006-B4C layered nanocomposite by a novel accumulative fold-forging (AFF) process. Materials and Design., 157, 211–226. doi:10.1016/j.matdes.2018.07.047
  • Kim, J. T., Soprunyuk, V., Chawake, N., Zheng, Y. H., Spieckermann, F., & Hong, S. H. (2020). Outstanding strengthening behavior and dynnamic mechanical properties of in-situ-Al-Al3Ni composites by Cu addition. Compos Part B Eng, 189, 1–14.
  • Kishchik, M. S., Mikhaylovskaya, A. V., Kotov, A. D., Mosleh, A. O., AbuShanab, W. S., & Portnoy, V. K. (2018). Effect of multidirectional forging on the grain structure and mechanical properties of the Al-Mg-Mn alloy. Materials, 11(11), 2166. doi:10.3390/ma11112166
  • Kishore Babu, N., Kallip, K., Leparoux, M., AlOgab, K. A., Talari, M. K., & Alqahtani, N. M. (2017). High strength Ti-6Al-4V alloy fabricated by high-energy cube milling using calcium as process control agent (PCA) and spark plasma sintering. The International Journal of Advanced Manufacturing Technology, 93(1-4), 445–453. doi:10.1007/s00170-017-9994-9
  • Kok, M. (2005). Production and mechanical Properties of Al2O3 particle-reinforced 2024 Aluminium alloy composites. Journal of Materials Processing Technology., 161(3), 381–387. doi:10.1016/j.jmatprotec.2004.07.068
  • Krushna, M. G., Shekhar, P. S., & Kumar, S. A. (2019). Effect of hot forging on high temperature tribological properties of aluminium composite reinforced with agro and industrial waste. Int J Eng Adv Technol, 8, 1607–1612.
  • Kulkarni, P. P., Siddeswarappa, B., & Kumar, K. S. H. (2019). A survey on effect of agro waste ash as reinforcement on aluminium base metal matrix composites. Open Journal of Composite Materials, 09(03), 312–326. doi:10.4236/ojcm.2019.93019
  • Kumar, B. M., Parameshwaran, R., Deepandurai, K., & Senthil, S. M. (2020). Influence of milling parameters on surface roughness of Al-SiC-B4C. Transactions of the Indian Institute of Metals, 73(5), 1171–1183. doi:10.1007/s12666-020-01960-6
  • Kumar, A., & Rai, R. N. (2018). Fabrication, microstructure and mechanical properties of boron carbide (B4Cp). IOP Conference Series: Materials Science and Engineering, 377, 012092. doi:10.1088/1757-899X/377/1/012092
  • Kumar, S., & Theerthan, J. A. (2008). Production and characterization of aluminium-fly ash composite using stir casting method. Rourkela: National Institute of Technology.
  • Kumar, V. M., & Venkatesh, C. V. (2018). Effect of ceramic reinforcement on mechanical properties of aluminium matrix composites produced by stir casting process. Materials Today: Proceedings, 5(1), 2466–2473. doi:10.1016/j.matpr.2017.11.027
  • Kummari, N., & Paramesh, M. (2019). Mechanical characterization of aluminium reinforced with boron carbide metal matrix composites. American Institute of Physics Conference Proceedings 2200, 020002, 1-10.
  • Lakshmi, V. V. K., Subbaiah, K. V., Sarojini, J. & Shabana, (2017). Study of mechanical properties and wear behaviour of sugarcane ash reinforced aluminium composite. International Journal of Mechanical Engineering & Technology, 8, 597–606.
  • Liu, H., Zhang, J., Gou, J., & Ding, C. (2017). The preparation of Al/Fe composite powders by electroless plating. Materials Science and Technology, 33(10), 1180–1185. doi:10.1080/02670836.2016.1271933
  • Lokesh, G. N., Ramachandra, M., & Mahendra, K. V. (2014). Effect of hot rolling on Al-4.5%Cu alloy reinforced fly ash metal matrix composite. International Journal of Composite Materials, 4, 21–29.
  • Ma, X., Zhao, Y. F., Tian, W. J., Qian, Z., Chen, H. W., Wu, Y. Y., & Liu, X. F. (2016). A novel Al matrix composite reinforced by nano-AlNp network. Scientific Reports, 6, 34919. doi:10.1038/srep34919
  • Manfredi, D., Calignano, F., Krishnan, M., Canali, Y., Ambrosio, E. P., & Biamino, S. (2014). Additive manufacturing of Al alloys and aluminium matrix composites (AMCs) Diego. Intech, 1, 1–35. 10.5772/57353.
  • Mangalore, P., Vittal, C. S., Ulvekar, A., & Sanjay, J. (2019). Study of tribological properties of Al 70729 alloy reinforced with agro waste particles. AIP Conf Proc n.d, 020015, 1–5. doi:10.1063/1.5092898
  • Marchese, G., Aversa, A., Lorusso, M., Manfredi, D., Calignano, F., Lombardi, M., … Pavese, M. (2018). Development and characterisation of aluminium matrix nanocomposites ALSi10Mg/MgAl2O4 by laser powder bed fusion. Metals (Metals), 8(3), 175. doi:10.3390/met8030175
  • McWilliams, B., Sano, T., Yu, J., Gordon, A., & Yen, C. (2013). Influence of hot rolling on the deformation behavior of particle aluminium metal matrix composite. Materials Science and Engineering: A, 577, 54–63. doi:10.1016/j.msea.2013.03.039
  • Mohanavel, V., Rajan, K., Suresh Kumar, S., Vijayan, G., & Vijayanand, M.S. (2018). Vijayanand M s. Study on mechanical properties of graphite particulates reinforced aluminium matrix composite fabricated by stir casting technique. Materials Today: Proceedings, 5(1), 2945–2950. doi:10.1016/j.matpr.2018.01.090
  • Muni, R. N., Singh, J., Kumar, V., & Sharma, S. (2019). Influence of rice husk ash, Cu, Mg on the mechanical behaviour of aluminium matrix hybrid composites. Journal of Applied Engineering Research, 14, 1828–1834.
  • Murthy, P. S. R., & Rao, Y. S. R. (2019). Evaluation of mechanical properties of aluminum alloy-alumima-boron carbide metal matrix composites. World Journal of Mechanical Engineering, 4, 027–034.
  • Nanjan, S., & Janakiram, G. M. (2019). NCharacteristics of A6061/(Glass-Fibre + Al2O3 + SiC + B4C) reinforced hybrid composite prepared through stir casting. Advances in Materials Science and Engineering, 2019, 1–12. doi:10.1155/2019/6104049
  • Narayan, S., & Rajeshkannan, A. (2017). Hardness, tensile and impact behavior of hot forged aluminium metal matrix composites. Journal of Materials Research and Technology, 6(3), 213–219. doi:10.1016/j.jmrt.2016.09.006
  • Naveen, G. J., & Ramesh, C. S. (2014). Microstructure and Effect of Ni-P Coating of Sic Particles on. Tribological Behavior of Cast Al6061-Sic Composites, 3, 606–609.
  • Obande, W., Mamalis, D., Ray, D., Yang, L., & O’Bradaigh, C. M. (2019). Mechanical and thermomechancial characterization of vacuum-infused thermoplastic and thermoset based composites. Materials and Design, 175, 1–13.
  • Orhadahwe, T. A., Adeleke, A. A., Aweda, J. O., Ikubanni, P. P., & Jamiu, K. (2020). Microstructural image analyses of mild carbon steel subjected to a rapid cyclic treatment. Journal of Chemical Technology and Metallurgy, 55, 198–209.
  • Ozer, A. (2016). The microstructures and mechanical properties of Al-15Si-2.5Cu-0.5Mg/(wt%)B4C composites produced through hot pressing technique and subjected to hot extrusion. Materials Chemistry and Physics, 183, 288–296. doi:10.1016/j.matchemphys.2016.08.029
  • Palanikumar, K., Rajkumar, E., & Pitchandi, S. (2019). K. Influence of Primary B4C Particles and Secondary Mica Particles on the Wear Performance of Al6061/B4C/Mica Hybrid Composites. J Bio- Tribo-Corrosion, 5, 1–12. doi:10.1007/s40735-019-0267-z.
  • Patel, M., Kumar, A., Sahu, S. K., & Singh, M. K. (2020). Mechanical behaviours of ceramic particulate reinforced aluminium metal matrix composites – a review. International Research Journal of Engineering & Technology, 7, 201–204.
  • Phanibhushana, M. V., Chandrappa, C. N., & Niranjan, H. B. (2018). Experimental study of hematite reinforced aluminum metal matrix composites subjected to equal channel angular pressing. Materials Today: Proceedings, 5(5), 13282–13289. doi:10.1016/j.matpr.2018.02.320
  • Pugalenthi, P., Jayaraman, M., & Subburam, V. (2019). Study of the microstructures and mechanical properties of aluminium hybrid composites With SiC and Al2O3. Materiali in Tehnologije, 53(1), 49–55. doi:10.17222/mit.2018.118
  • Quintana, J. L. C., Medina, S. S., Hernandez, M., & Suarez, O. M. (2018). Study of thermomechanical properties of an Al-Zn-Based Based composite reinforced with dodecarboride particles. Advances in Materials Science and Engineering V, 1–8. doi:10.1155/2018/2975234.
  • Radhika, N., Subramanian, R., Venkat Prasat, S., & Anandavel, B. (2012). Dry sliding wear behaviour of aluminium/alumina/graphite hybrid metal matrix composites. Industrial Lubrication and Tribology, 64(6), 359–366. doi:10.1108/00368791211262499
  • Ramesh, C. S., Keshavamurthy, R., Pramod, S., & Koppad, P. G. (2011). Abrasive wear behavior of Ni-P coated Si3N4 reinforced Al6061 composites. Journal of Materials Processing Technology, 211(8), 1423–1431. doi:10.1016/j.jmatprotec.2011.03.015
  • Ramnath, B. V., Elanchezhian, C., Annamalai, R. M., Aravind, S., Atreya, T. S. A., & Vignesh, V. (2014). Aluminium metal matrix composites - A review. Reviews on Advanced Materials Science, 38, 55–60.
  • Ravi, B., Balu, N. K., & Uday, P. J. (2016). Fabrication and mechanical characterization of boron carbide reinforced aluminium matrix composites. Discovery, 52, 1389–1395.
  • Ravikumar, A. R., Amirthagadeswaran, K. S., & Senthil, P. (2014). Parametric optimization of squeeze cast AC2A-Ni Coated SiC p composite using taguchi technique. Advances in Materials Science and Engineering., 2014, 1–10. doi:10.1155/2014/160519
  • Reddappa, H. N., Suresh, K. R., Niranjan, H. B., & Satyanarayana, K. G. (2020). Effect of rolling on microstructure and wear behavior of hot rolled Al6061-Beryl composites. Advanced Material Research, 463 – 464, 444-448.
  • Reddy, P. S., Kesavan, R., & Vijaya Ramnath, B. (2018). Investigation of mechanical properties of aluminium 6061-silicon carbide, boron carbide metal matrix composites. Silicon, 10(2), 495–502. doi:10.1007/s12633-016-9479-8
  • Rofman, O. V., Mikhaylovskaya, A. V., Kotov, A. D., Prosviryakov, A. S., & Portnoy, V. K. (2019). Effect of thermomechanical treatment on properties of an extruded Al–3.0Cu–1.2Mg/SiCp composite. Materials Science and Engineering: A, 739, 235–243. doi:10.1016/j.msea.2018.10.053
  • Rozhbiany, F. A. R., & Jalal, S. R. (2019). Influence of reinforcement and processing on aluminum matrix composites modified by stir casting route. Advanced Composites Letters, 28, 1–8.
  • Saravanakumar, A., Sasikumar, P., & Sivasankaran, S. (2014). Effect of graphite particles in drilling of hybrid aluminium matrix composites. Procedia Engineering, 97, 495–504. doi:10.1016/j.proeng.2014.12.274
  • Shirvanimoghaddam, K., Khayyam, H., Abdizadeh, H., Karbalaei Akbari, M., Pakseresht, A.H., Ghasali, E., & Naebe, M. (2016). Boron carbide reinforced aluminium matrix composite: Physical, mechanical characteriztion and mathematical modelling. Materials Science and Engineering: A, 658, 135–149. doi:10.1016/j.msea.2016.01.114
  • Singla, M., Rana, R., & Lata, S. (2017). Microstructure and mechanical properties of aluminium based metal matrix composite – a review manufacturing microstructure and mechanical properties of aluminium based metal matrix composite – a review. International Journal of Advanced Product Industrial Engineering, 517, 3–6.
  • Soni, S., & Pandey, A. (2014). Effect of heat treatment on mechanical and corrosion. International Journal of Advanced Mechanical Engineering, 4, 767–782.
  • Soundararajan, R., Ramesh, A., Sivasankaran, S., & Vignesh, M. (2017). Modeling and analysis of mechanical properties of aluminium alloy (A413) reinforced with boron carbide (B4C) processed through squeeze casting process using artificial neural network model and statistical technique. Materials Today: Proceedings, 4(2), 2008–2030. doi:10.1016/j.matpr.2017.02.047
  • Stojanovic, B., Babic, M., Mitrovic, S., Vencl, A., Miloradovic, N., & Pantic, M. (2013). Tribological characteristics of aluminium hybrid composites reinforced with silicon carbide and graphite: A review. Journal of the Balkan Tribological Association, 19, 83–89.
  • Subramaniam, B., Natarajan, B., Kaliyaperumal, B., & Chelladurai, S. J. S. (2018). Investigation on mechanical properties of aluminium 7075-boron-coconut shell fly ash reinforced hybrid metal matrix composites. China Foundry, 15(6), 449–455. doi:10.1007/s41230-018-8105-3
  • Thirumalai, T., Subramanian, R., Kumaran, S., Dharmalingam, S., & Ramakrishnan, S. S. (2014). Production and characterization of hybrid aluminum matrix composites reinforced with boron carbide (B4C) and graphite. Journal of Scientific and Industrial Research (India), 73, 667–670.
  • Tiku, V., Navin, K., & Kurchania, R. (2020). Study of structural and mechanical properties of Al/Nano-Al2O3 metal matrix nanocomposite fabricated by powder metallurgy method. Transactions of the Indian Institute of Metals, 73(4), 1007–1013. doi:10.1007/s12666-020-01931-x
  • Tjong, S. C., Wang, G. S., Geng, L., & Mai, Y. W. (2004). Cyclic deformation behavior of in situ aluminum-matrix composites of the system Al-Al3Ti-TiB2-Al2O3. Composites Science and Technology, 64(13-14), 1971–1980. doi:10.1016/j.compscitech.2004.02.006
  • Tjong, S. C., Wang, G. S., & Mai, Y. W. (2005). High cycle fatigue response of in-situ Al-based composites containing TiB2 and Al2O3 submicron particles. Composites Science and Technology, 65(10), 1537–1546. doi:10.1016/j.compscitech.2005.01.012
  • Vandersluis, E., Bois-Brochu, A., Ravindran, C., & Chiesa, F. (2020). Mechanical properties and properties of low-pressure die-cast 319 aluminum prepared with hot isostatic pressing, thermal treatment or chemical treatment. Journal of Materials Engineering and Performance, 1–11. doi:10.1007/s11665-020-04743-8.
  • Varvani-Farahani, A. (2010). Composite materials: Characterization, fabrication and application - Research challenges and directions. Applied Composite Materials, 17(2), 63–67. doi:10.1007/s10443-009-9107-5
  • Veličković, S., Garić, S., Stojanović, B., & Vencl, A. (2016). Tribological Properties of Aluminium Matrix Nanocomposites. Applied Engineering Letters, 1, 72–79.
  • Veličković, S., Stojanović, B., Babić, M., Vencl, A., Bobić, I., & Bognár, G. V. (2019). Parametric optimization of the aluminium nanocomposites wear rate. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 1-10. doi:10.1007/s40430-018-1531-8.
  • Vijayaraghavan, K., Arul Kumar, A., Amos Robert Jayachandran, J., & Subramani, N. (2016). Analysis on aluminium metal matrix composites with boron carbide and graphite. International Journal of Innovative Research in Science Engineering and Technology, 5, 46–51.
  • Wąsik, A., Leszczyńska-Madej, B., Madej, M., & Goły, M. (2020). Effect of heat treatment on microstructure of Al4Cu-SiC composites consolidated by powder metallurgy technique. Journal of Materials Engineering and Performance, 29(3), 1841–1848. doi:10.1007/s11665-020-04685-1
  • Wlodarcyzk-Fligier, A., Dobrzanski, L.A., Kremzer, M., & Adamiak, M. (2008). Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles. Journal of Achievements in Materials and Manufacturing Engineering, 27(1), 99.
  • Xavier, L. F., & Suresh, P. (2016). Wear behavior of aluminium metal matrix composite prepared from industrial waste. Scientific World Journal., 2016, 1–8. doi:10.1155/2016/6538345
  • Xi, L., Gu, D., Guo, S., Wang, R., Ding, K., & Prashanth, K. G. (2020). Grain refinement in laser manufactured Al-based composites with TiB2 ceramic. Journal of Materials Research and Technology., 9(3), 2611–2622. doi:10.1016/j.jmrt.2020.04.059
  • Yadav, B. N., Muchhala, D., Singh, P., Gupta, G., Venkat, A. N. C., & Mondal, D. P. (2020). Compressive deformation behavior of Al–SiC–MWCNTs hybrid composite foam through factorial design of experiments. Transactions of the Indian Institute of Metals, 73(1), 223–234. doi:10.1007/s12666-019-01825-7
  • Yekinni, A. A., Durowoju, M. O., Agunsoye, J. O., Mudashiru, L. O., Animashaun, L. A., & Sogunro, O. D. (2019). Automotive application of hybrid composites of aluminium alloy matrix: A review of rice husk as based reinforcements. International Journal of Composite Materials, 9, 44–52.
  • Yuen, H. C., Lee, W. B., & Ralph, B. (1995). Hot-rolling bonding of aluminium matrix composites with different volume fractions of alumina. Journal of Materials Science, 30(4), 843–848. doi:10.1007/BF01178415
  • Zeng, Y., Chao, Y., Luo, Z., Cai, Y., & Song, R. (2018). Effect of multidirectional forging and heat treatment on mechanical properties of in in situ ZrB2p/6061Al composites. High Temperature Materials and Processes, 37(7), 603–612. doi:10.1515/htmp-2016-0200