1,642
Views
9
CrossRef citations to date
0
Altmetric
Article

Multi-response optimization of the coagulation process of real textile wastewater using a natural coagulant

ORCID Icon
Pages 406-422 | Received 12 Jul 2020, Accepted 02 Oct 2020, Published online: 13 Oct 2020

References

  • Adesina, O. A., Abdulkareem, F., Yusuff, A. S., Lala, M., & Okewale, A. (2019). Response surface methodology approach to optimization of process parameter for coagulation process of surface water using Moringa oleifera seed. South African Journal of Chemical Engineering, 28, 46–51. doi:10.1016/j.sajce.2019.02.002
  • Ahmad, S.W. (2018). Dye removal from textile waste water using potato starch: Parametric optimization using Taguchi design of experiments. Archives of Environmental Protection, 44(2), 26–31.
  • Ahmaruzzaman, M., & Gupta, V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial & Engineering Chemistry Research, 50(24), 13589–13613. doi:10.1021/ie201477c
  • Ali, I. (2012). Removal of arsenate from aqueous solution by electro-coagulation method using Al-Fe electrodes. International Journal of Electrochemical Science., 7, 1898–1907.
  • Ali, I. (2018). Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations. Journal of Molecular Liquids, 271, 677–685. doi:10.1016/j.molliq.2018.09.021
  • Ali, I., Burakova, I., Galunin, E., Burakov, A., Mkrtchyan, E., Melezhik, A., … Grachev, V. (2019). High-Speed and high-capacity removal of methyl orange and malachite green in water using newly developed mesoporous carbon: Kinetic and isotherm studies. ACS Omega, 4(21), 19293–19306. doi:10.1021/acsomega.9b02669
  • Almeida, CAd. Vegetable residueof Chayote (Sechium edule SW.) as natural coagulant for treatment of textile wastewater. (2017).
  • Ang, W.L., & Mohammad, A.W. (2019). Chapter 9 - Integrated and hybrid process technology. In C. M. Galanakis & E. Agrafioti (Eds.), Sustainable Water and Wastewater Processing (pp. 279–328). Elsevier.
  • Ang, W.L., & Mohammad, A.W. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner Production, 262, 121267. doi:10.1016/j.jclepro.2020.121267
  • Anjaneyulu, Y., Sreedhara Chary, N., & Samuel Suman Raj, D. (2005). Decolourization of industrial effluents - Available methods and emerging technologies - A review. Reviews in Environmental Science and Bio/Technology, 4(4), 245–273. doi:10.1007/s11157-005-1246-z
  • Araújo, C.S.T. (2013). Bioremediation of waters contaminated with heavy metals using Moringa oleifera seeds as biosorbent. In Applied Bioremediation - Active and Passive Approaches. IntechOpen Limited.
  • Barker, T.B., & Milivojevich, A. (2016). Quality by experimental design. London: CRC Press.
  • Bruno, P., Campo, R., Giustra, M.G., De Marchis, M., & Di Bella, G. (2020). Bench scale continuous coagulation-flocculation of saline industrial wastewater contaminated by hydrocarbons. Journal of Water Process Engineering, 34, 101156. doi:10.1016/j.jwpe.2020.101156
  • Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702–712. doi:10.1016/j.ecoenv.2017.11.034
  • Cuadros, J., Afsin, B., Michalski, J. R., & Ardakani, M. (2012). Fast, microscale-controlled weathering of rhyolitic obsidian to quartz and alunite. Earth and Planetary Science Letters, 353-354, 156–162. doi:10.1016/j.epsl.2012.08.009
  • Cui, C., Chen, S., Wang, X., Yuan, G., Jiang, F., Chen, X., & Wang, L. (2019). Characterization of Moringa oleifera roots polysaccharide MRP-1 with anti-inflammatory effect. International Journal of Biological Macromolecules, 132, 844–851. doi:10.1016/j.ijbiomac.2019.03.210
  • Dalvand, A., Gholibegloo, E., Ganjali, M. R., Golchinpoor, N., Khazaei, M., Kamani, H., … Mahvi, A. H. (2016). Comparison of Moringa stenopetala seed extract as a clean coagulant with Alum and Moringa stenopetala-Alum hybrid coagulant to remove direct dye from Textile Wastewater. Environmental Science and Pollution Research International, 23(16), 16396–16405. doi:10.1007/s11356-016-6708-z
  • Dasgupta, J., Sikder, J., Chakraborty, S., Curcio, S., & Drioli, E. (2015). Remediation of textile effluents by membrane based treatment techniques: A state of the art review. Journal of Environmental Management, 147, 55–72. doi:10.1016/j.jenvman.2014.08.008
  • de Souza, M. T. F., de Almeida, C. A., Ambrosio, E., Santos, L. B., Freitas, T. K. F. d S., Manholer, D. D., … Garcia, J. C. (2016). Extraction and use of Cereus peruvianus cactus mucilage in the treatment of textile effluents. Journal of the Taiwan Institute of Chemical Engineers, 67, 174–183. doi:10.1016/j.jtice.2016.07.009
  • Demir, M.E., Chehade, G., Dincer, I., Yuzer, B., & Selcuk, H. (2019). Synergistic effects of advanced oxidization reactions in a combination of TiO2 photocatalysis for hydrogen production and wastewater treatment applications. International Journal of Hydrogen Energy, 44(43), 23856–23867. doi:10.1016/j.ijhydene.2019.07.110
  • Dil, E. A., Ghaedi, M., Ghaedi, A.M., Asfaram, A., Goudarzi, A., Hajati, S., … Gupta, V. K. (2016). Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: Analysis by derivative spectrophotometry. Journal of Industrial and Engineering Chemistry, 34, 186–197. doi:10.1016/j.jiec.2015.11.010
  • Dos Santos, T.R.T. (2018). Evaluation of magnetic coagulant (Α-Fe2O3-MO) and its reuse in textile wastewater treatment. Water, Air, and Soil Pollution, 229(3)
  • Dotto, J., Fagundes-Klen, M. R., Veit, M. T., Palácio, S. M., & Bergamasco, R. (2019). Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production, 208, 656–665. doi:10.1016/j.jclepro.2018.10.112
  • Freitas, T.K.F.S., Oliveira, V.M., de Souza, M.T.F., Geraldino, H.C.L., Almeida, V.C., Fávaro, S.L., & Garcia, J.C. (2015). Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Industrial Crops and Products, 76, 538–544. doi:10.1016/j.indcrop.2015.06.027
  • Ghaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Agarwal, S., Maity, A., & Gupta, V.K. (2015). Modeling of competitive ultrasonic assisted removal of the dyes – Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chemical Engineering Journal, 268, 28–37. doi:10.1016/j.cej.2014.12.090
  • Gogate, P.R., Thanekar, P.D., & Oke, A.P. (2020). Strategies to improve biological oxidation of real wastewater using cavitation based pre-treatment approaches. Ultrasonics Sonochemistry, 64, 105016 doi:10.1016/j.ultsonch.2020.105016
  • Gupta, V. K., Ali, I., Saleh, T. A., Siddiqui, M. N., & Agarwal, S. (2013). Chromium removal from water by activated carbon developed from waste rubber tires. Environmental Science and Pollution Research International, 20(3), 1261–1268. doi:10.1007/s11356-012-0950-9
  • Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C, 31(5), 1062–1067. doi:10.1016/j.msec.2011.03.006
  • Gupta, V. K., Rastogi, A., Dwivedi, M. K., & Mohan, D. (1997). Process Development for the removal of zinc and cadmium from wastewater using Slag—A Blast Furnace waste material. Separation Science and Technology, 32(17), 2883–2912. doi:10.1080/01496399708002227
  • Gupta, V.K., & Saleh, T.A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview. Environmental Science and Pollution Research International, 20(5), 2828–2843. doi:10.1007/s11356-013-1524-1
  • Gupta, V.K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20(1), 1–18. doi:10.4491/eer.2015.018
  • Harrelkas, F., Azizi, A., Yaacoubi, A., Benhammou, A., & Pons, M. N. (2009). Treatment of textile dye effluents using coagulation–flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination, 235(1-3), 330–339. doi:10.1016/j.desal.2008.02.012
  • Hodaifa, G., Gallardo, P. A. R., García, C. A., Kowalska, M., & Seyedsalehi, M. (2019). Chemical oxidation methods for treatment of real industrial olive oil mill wastewater. Journal of the Taiwan Institute of Chemical Engineers, 97, 247–254. doi:10.1016/j.jtice.2019.02.001
  • Hube, S., Eskafi, M., Hrafnkelsdóttir, K. F., Bjarnadóttir, B., Bjarnadóttir, M. Á., Axelsdóttir, S., & Wu, B. (2020). Direct membrane filtration for wastewater treatment and resource recovery: A review. The Science of the Total Environment, 710, 136375 doi:10.1016/j.scitotenv.2019.136375
  • Jiang, J.-Q. (2015). The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 8, 36–44. doi:10.1016/j.coche.2015.01.008
  • Jorfi, S., Barzegar, G., Ahmadi, M., Darvishi Cheshmeh Soltani, R., Alah Jafarzadeh Haghighifard, N., Takdastan, A., … Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. Journal of Environmental Management, 177, 111–118. doi:10.1016/j.jenvman.2016.04.005
  • Kang, J., & Treviño, J. (2017). Evaluating Moringa Oleifera, Papaya, and Pumpkin Seed as a Natural Coagulant. International Journal of Life Sciences Research, 5(2), 126–131.
  • Kristianto, H., Kurniawan, M.A., & Soetedjo, J.N.M. (2018). Utilization of Papaya Seeds as natural coagulant for synthetic textile coloring agent wastewater treatment. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2071–2077. doi:10.18517/ijaseit.8.5.3804
  • Kumar, K., & Chowdhury, A. (2020). Use of novel nanostructured photocatalysts for the environmental sustainability of wastewater treatments. In S. Hashmi & I.A. Choudhury, (Eds.), Encyclopedia of Renewable and Sustainable Materials (pp. 949–964). Oxford: Elsevier.
  • Landázuri, A. C., Villarreal, J. S., Núñez, E. R., Pico, M. M., Lagos, A. S., Caviedes, M., & Espinosa, E. (2018). Experimental evaluation of crushed Moringa oleifera Lam. seeds and powder waste during coagulation-flocculation processes. Journal of Environmental Chemical Engineering, 6(4), 5443–5451. doi:10.1016/j.jece.2018.08.021
  • Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, Å., Pettersen, J., & Bergman, R. (1998). Experimental design and optimization. Chemometrics and Intelligent Laboratory Systems, 42(1-2), 3–40. doi:10.1016/S0169-7439(98)00065-3
  • Manholer, D. D., de Souza, M. T. F., Ambrosio, E., Freitas, T. K. F. d S., Geraldino, H. C. L., & Garcia, J. C. (2019). Coagulation/flocculation of textile effluent using a natural coagulant extracted from Dillenia indica. Water Science and Technology : a Journal of the International Association on Water Pollution Research, 80(5), 979–988. doi:10.2166/wst.2019.342
  • Menkiti, M.C., Okoani, A.O., & Ejimofor, M.I. (2018). Adsorptive study of coagulation treatment of paint wastewater using novel Brachystegia eurycoma extract. Applied Water Science, 8(6), 189. doi:10.1007/s13201-018-0836-1
  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2010). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science, 344(2), 497–507. doi:10.1016/j.jcis.2010.01.007
  • Mohammed Redha, Z., Abdulla Yusuf, H., Amin, R., & Bououdina, M. (2020). The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm. Arab Journal of Basic and Applied Sciences, 27(1), 287–298. doi:10.1080/25765299.2020.1800163
  • Mohd-Salleh, S.N.A., Mohd-Zin, N.S., & Othman, N. (2019). A review of wastewater treatment using natural material and its potential as aid and composite coagulant. Sains Malaysiana, 48(1), 155–164. doi:10.17576/jsm-2019-4801-18
  • Mojet, B., Ebbesen, S., & Lefferts, L. (2010). ChemInform Abstract: Light at the Interface: The Potential of Attenuated Total Reflection Infrared Spectroscopy for Understanding Heterogeneous Catalysis in Water. Chemical Society Reviews, 39(12), 4643–4655. doi:10.1039/c0cs00014k
  • Nekouei, F., Nekouei, S., Tyagi, I., & Gupta, V. K. (2015). Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. Journal of Molecular Liquids, 201, 124–133. doi:10.1016/j.molliq.2014.09.027
  • Nonfodji, O. M., Fatombi, J. K., Ahoyo, T. A., Osseni, S. A., & Aminou, T. (2020). Performance of Moringa oleifera seeds protein and Moringa oleifera seeds protein-polyaluminum chloride composite coagulant in removing organic matter and antibiotic resistant bacteria from hospital wastewater. Journal of Water Process Engineering, 33, 101103. doi:10.1016/j.jwpe.2019.101103
  • Obiora-Okafo, I.A., & Onukwuli, O.D. (2017). Optimization of coagulation-flocculation process for colour removal from Azo dye using natural polymers: Response surface methodological approach. Nigerian Journal of Technology, 36(2), 482–495. doi:10.4314/njt.v36i2.23
  • Onukwuli, O.D., Obiora-Okafo, I.A., & Omotioma, M. (2019). Characterization and removal of colour from aqueous solution using bio-coagulants: Response surface methodological approach. Journal of Chemical Technology and Metallurgy, 54(1), 77–89.
  • Patel, H., & Vashi, R.T. (2013). Comparison of naturally prepared coagulants for removal of COD and color from textile wastewater. Global Nest Journal, 15(4), 522–528.
  • Prabhakaran, G., Manikandan, M., & Boopathi, M. (2020). Treatment of textile effluents by using natural coagulants. Materials Today: Proceedings, doi:10.1016/j.matpr.2020.03.029
  • Prasad, R.K. (2009). Color removal from distillery spent wash through coagulation using Moringa oleifera seeds: Use of optimum response surface methodology. Journal of Hazardous Materials, 165(1-3), 804–811. doi:10.1016/j.jhazmat.2008.10.068
  • Rajendran, S., Khan, M. M., Gracia, F., Qin, J., Gupta, V. K., & Arumainathan, S. (2016). Ce(3+)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite . Scientific Reports, 6(1), 31641 doi:10.1038/srep31641
  • Rambe, A.M. (2018). The use of the Kelor Seeds (Moringa oleifera) as alternative coagulant in waste delivery process of textile industrial waste. in IOP Conference Series: Materials Science and Engineering. doi:10.1088/1757-899X/309/1/012075
  • Reddy, D. H. K., Seshaiah, K., Reddy, A.V.R., & Lee, S.M. (2012). Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydrate Polymers, 88(3), 1077–1086. doi:10.1016/j.carbpol.2012.01.073
  • Riera-Torres, M., Gutiérrez-Bouzán, C., & Crespi, M. (2010). Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252(1-3), 53–59. doi:10.1016/j.desal.2009.11.002
  • Sadri Moghaddam, S., Alavi Moghaddam, M.R., & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. Journal of Hazardous Materials, 175(1-3), 651–657. doi:10.1016/j.jhazmat.2009.10.058
  • Saha, S., Boro, R., & Das, C. (2019). Treatment of tea industry wastewater using coagulation-spinning basket membrane ultrafiltration hybrid system. Journal of Environmental Management, 244, 180–188. doi:10.1016/j.jenvman.2019.05.043
  • Saleem, M., & Bachmann, R.T. (2019). A contemporary review on plant-based coagulants for applications in water treatment. Journal of Industrial and Engineering Chemistry, 72, 281–297. doi:10.1016/j.jiec.2018.12.029
  • Saleh, T.A., & Gupta, V.K. (2011). Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. Journal of Colloid and Interface Science, 362(2), 337–344. doi:10.1016/j.jcis.2011.06.081
  • Saleh, T.A., & Gupta, V.K. (2012). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Journal of Colloid and Interface Science, 371(1), 101–106. doi:10.1016/j.jcis.2011.12.038
  • Saleh, T.A., & Gupta, V.K. (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Advances in Colloid and Interface Science, 211, 93–101. doi:10.1016/j.cis.2014.06.006
  • Sánchez-Martín, J., Ghebremichael, K., & Beltrán-Heredia, J. (2010). Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal. Bioresource Technology, 101(15), 6259–6261. doi:10.1016/j.biortech.2010.02.072
  • Saravanan, R., Gupta, V.K., Prakash, T., Narayanan, V., & Stephen, A. (2013). Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. Journal of Molecular Liquids, 178, 88–93. doi:10.1016/j.molliq.2012.11.012
  • Saravanan, R., Joicy, S., Gupta, V. K., Narayanan, V., & Stephen, A. (2013). Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Materials Science & Engineering. C, Materials for Biological Applications, 33(8), 4725–4731. doi:10.1016/j.msec.2013.07.034
  • Saravanan, R., Karthikeyan, N., Gupta, V. K., Thirumal, E., Thangadurai, P., Narayanan, V., & Stephen, A. (2013). ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light. Materials Science & Engineering C, Materials for Biological Applications, 33(4), 2235–2244. doi:10.1016/j.msec.2013.01.046
  • Saravanan, R., Karthikeyan, S., Gupta, V. K., Sekaran, G., Narayanan, V., & Stephen, A. (2013). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science & Engineering C, Materials for Biological Applications, 33(1), 91–98. doi:10.1016/j.msec.2012.08.011
  • Saravanan, R., Khan, M. M., Gupta, V. K., Mosquera, E., Gracia, F., Narayanan, V., & Stephen, A. (2015). ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Advances, 5(44), 34645–34651. doi:10.1039/C5RA02557E
  • Saravanan, R., Mansoob Khan, M., Gupta, V. K., Mosquera, E., Gracia, F., Narayanan, V., & Stephen, A. (2015). ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. Journal of Colloid and Interface Science, 452, 126–133. doi:10.1016/j.jcis.2015.04.035
  • Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029–1033. doi:10.1016/j.molliq.2016.06.074
  • Saritha, V., Karnena, M.K., & Dwarapureddi, B.K. (2019). Exploring natural coagulants as impending alternatives towards sustainable water clarification– A comparative studies of natural coagulants with alum. Journal of Water Process Engineering, 32, 100982. doi:10.1016/j.jwpe.2019.100982
  • Šćiban, M., Klašnja, M., Antov, M., & Škrbić, B. (2009). Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresource Technology, 100(24), 6639–6643. doi:10.1016/j.biortech.2009.06.047
  • Shamsnejati, S., Chaibakhsh, N., Pendashteh, A. R., & Hayeripour, S. (2015). Mucilaginous seed of Ocimum basilicum as a natural coagulant for textile wastewater treatment. Industrial Crops and Products, 69, 40–47. doi:10.1016/j.indcrop.2015.01.045
  • Sher, F., Malik, A., & Liu, H. (2013). Industrial polymer effluent treatment by chemical coagulation and flocculation. Journal of Environmental Chemical Engineering, 1(4), 684–689. doi:10.1016/j.jece.2013.07.003
  • Suhas, Gupta, V.K., Carrott, P.J.M., Singh, R., Chaudhary, M., Kushwaha, S. (2016). Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology, 216, 1066–1076. doi:10.1016/j.biortech.2016.05.106
  • Suresh, A., Ganesh, B., & Velmurugan, S. (2019). Decolorisation of azo dye (Congo red) from synthetic solution using natural coagulants. Journal of Surface Science and Technology, 35(3-4), 151–154.
  • Tiaiba, M. (2018). Study of chemical coagulation conditions for a disperse red dye removal from aqueous solutions. Membrane Water Treatment, 9(1), 9–15.
  • Torres, N. H., Souza, B. S., Ferreira, L. F. R., Lima, Á. S., Dos Santos, G. N., & Cavalcanti, E. B. (2019). Real textile effluents treatment using coagulation/flocculation followed by electrochemical oxidation process and ecotoxicological assessment. Chemosphere, 236, 124309 doi:10.1016/j.chemosphere.2019.07.040
  • Villaseñor-Basulto, D. L., Astudillo-Sánchez, P. D., del Real-Olvera, J., & Bandala, E. R. (2018). Wastewater treatment using Moringa oleifera Lam seeds: A review. Journal of Water Process Engineering, 23, 151–164. doi:10.1016/j.jwpe.2018.03.017
  • Vunain, E., Masoamphambe, E. F., Mpeketula, P. M. G., Monjerezi, M., & Etale, A. (2019). Evaluation of coagulating efficiency and water borne pathogens reduction capacity of Moringa oleifera seed powder for treatment of domestic wastewater from Zomba, Malawi. Journal of Environmental Chemical Engineering, 7(3), 103118. doi:10.1016/j.jece.2019.103118
  • Wambuguh, D., & Chianelli, R. (2008). Indigo dye waste recovery from blue denim textile effluent: A by-product synergy approach. New Journal of Chemistry, 32(12), 2189. doi:10.1039/b806213g
  • Zahrim, A.Y., Tizaoui, C., & Hilal, N. (2011). Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination, 266(1-3), 1–16. doi:10.1016/j.desal.2010.08.012
  • Zhang, M., Zhang, Z., Liu, S., Peng, Y., Chen, J., & Yoo Ki, S. (2020). Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultrasonics Sonochemistry, 65, 105058 doi:10.1016/j.ultsonch.2020.105058
  • Zheng, H., Sun, Y., Guo, J., Li, F., Fan, W., Liao, Y., & Guan, Q. (2014). Characterization and evaluation of dewatering properties of PADB, a highly efficient cationic flocculant. Industrial & Engineering Chemistry Research, 53(7), 2572–2582. doi:10.1021/ie403635y