818
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Homotopy analysis approach to study the dynamics of fractional deterministic Lotka-Volterra model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 121-128 | Received 26 Aug 2021, Accepted 22 Apr 2022, Published online: 09 May 2022

References

  • Abeye, N., Ayalew, M., Suthar, D. L., Purohit, S. D., & Jangid, K. (2022). Numerical solution of unsteady state fractional advection–dispersion equation. Arab Journal of Basic and Applied Sciences, 29(1), 77–85. doi:10.1080/25765299.2022.2064076
  • Addison, L. M. (2017). Analysis of a predator-prey model: A deterministic and stochastic approach. Journal of Biometrics and Biostatistics, 8(4), 1–9.
  • Agarwal, G., Yadav, L. K., Albalawi, W., Nisar, K. S., & Shefeeq, T. (2022). Two analytical approaches for space- and time-fractional coupled burger’s equations via Elzaki transform. Progress in Fractional Differentiation and Applications, 8, 177–190.
  • Agarwal, R., Kritika, & Purohit, S. D. (2021). Mathematical model pertaining to the effect of buffer over cytosolic calcium concentration distribution. Chaos, Solitons & Fractals, 143, 110610. doi:10.1016/j.chaos.2020.110610
  • Agarwal, R., Kritika, Purohit, S. D., & Kumar, D. (2021). Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems, 14, 3387–3399.
  • Alaria, A., Khan, A. M., Suthar, D. L., & Kumar, D. (2019). Application of fractional operators in modelling for charge carrier transport in amorphous semiconductor with multiple trapping. International Journal of Applied and Computational Mathematics, 5(6), 1–10. doi:10.1007/s40819-019-0750-8
  • Anisiu, M. C. (2014). Lotka-Volterra and their model. Didatica Mathematica, 32, 9–17.
  • Carmichael, R. D., & Lotka, A. J. (1926). Elements of physical biology. The American Mathematical Monthly, 33(8), 426–428. doi:10.2307/2298330
  • Dave, S., Khan, A. M., Purohit, S. D., & Suthar, D. L. (2021). Application of green synthesized metal nano-particles in photo catalytic degradation of dyes and its mathematical modelling using Caputo Fabrizio fractional derivative without singular kernel. Journal of Mathematics, 2021, 1–8. doi:10.1155/2021/9948422
  • Doungmo Goufo, E. F., Kumar, S., & Mugisha, S. B. (2020). Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos, Solitons & Fractals, 130, 109467. doi:10.1016/j.chaos.2019.109467
  • Ghanbari, B., Kumar, S., & Kumar, R. (2020). A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos, Solitons & Fractals, 133, 109619. doi:10.1016/j.chaos.2020.109619
  • Hassani, M., Tabar, M. M., Nemati, H., Domairry, G., & Noori, F. (2011). An analytical solution for boundary layer flow of a nanofluid past a stretching sheet. International Journal of Thermal Sciences, 48, 1–8.
  • Khan, A. M., Purohit, S. D., Dave, S., & Suthar, D. L. (2021). Fractional mathematical modelling of degradation of dye in textile effluents. Mathematics in Engineering, Science and Aerospace, 2021(3), 1–9.
  • Kritika, R., & Agarwal, S. D. (2020). Mathematical model for anomalous subdiffusion using conformable operator. Chaos, Solitons & Fractals, 140, 110199. doi:10.1016/j.chaos.2020.110199
  • Kumar, S., Kumar, R., Agarwal, R. P., & Samet, B. (2020). A study on fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Mathematical Methods in the Applied Sciences, 43(8), 5564–5578. doi:10.1002/mma.6297
  • Kumar, S., Kumar, A., Samet, B., Gómez-Aguilar, J. F., & Osman, M. S. (2020). A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos, Solitons & Fractals, 141, 110321. doi:10.1016/j.chaos.2020.110321
  • Liao, S. J. (1997). An approximate solution technique which does not depend upon small parameters: A special example. International Journal of Non-Linear Mechanics, 32(5), 815–822. doi:10.1016/S0020-7462(96)00101-1
  • Liao, S. J. (2004). On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 147(2), 499–513. doi:10.1016/S0096-3003(02)00790-7
  • Liu, X., & Chen, L. (2003). Complex dynamics of Holling type-II Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos, Solitons & Fractals, 16(2), 311–320. doi:10.1016/S0960-0779(02)00408-3
  • Maiti, A., Sen, P., & Samanta, G. P. (2016). Deterministic and stochastic analysis of a prey-predator model with herd behavior in both Systems. Science & Control Engineering, 4(1), 259–269. doi:10.1080/21642583.2016.1241194
  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: Wiley.
  • Mistry, L., Khan, A. M., & Suthar, D. L. (2020). An epidemic slia mathematical model with Caputo Fabrizio Fractional derivative. Test Engineering and Management, 83, 26374–26391.
  • Nassar, C. J., Revelli, J. F., & Bowman, R. J. (2011). Application of the homotopy analysis method to the Poisson-Boltzmann equation for semiconductor devices. International Journal of Nonlinear Sciences and Numerical Simulation, 16(6), 2501–2512. doi:10.1016/j.cnsns.2010.09.015
  • Oldham, K. B., & Spanier, J. (1974). The fractional calculus. New York: Academic Press.
  • Pareek, N., Gupta, A., Agarwal, G., & Suthar, D. L. (2021). Natural transform along with HPM technique for solving fractional ADE. Advances in Mathematical Physics, 2021, 1–11. doi:10.1155/2021/9915183
  • Podlubny, I. (1999). Fractional differential equations. San Diego: Academic Press.
  • Ramani, P., Khan, A. M., & Suthar, D. L. (2019). Revisiting analytical-approximate solution of time fractional Rosenau-Hyman equation via fractional reduced differential transform method. International Journal on Emerging Technologies, 10(2), 403–409.
  • Ramani, P., Khan, A. M., Suthar, D. L., & Kumar, D. (2022). Approximate analytical solution for non-linear Fitzhugh–Nagumo equation of time fractional order through fractional reduced differential transform method. International Journal of Applied and Computational Mathematics, 8(2), 61. doi:10.1007/s40819-022-01254-z
  • Song, L., & Zhang, H. (2007). Application of homotopy analysis method to fractional KdV Burgers-Kuramoto equation. Physics Letters A, 367(1–2), 88–94. doi:10.1016/j.physleta.2007.02.083
  • Sprott, J. C., Wildenberg, J. C., & Azizi, Y. (2005). A simple spatiotemporal chaotic Lotka-Volterra Model. Chaos, Solitons & Fractals, 26(4), 1035–1043. doi:10.1016/j.chaos.2005.02.015
  • Suthar, D. L., Purohit, S. D., & Araci, S. (2020). Solution of fractional kinetic equations associated with the (p, q)-Mathieu-type series. Discrete Dynamics in Nature and Society, 2020, 1–7. doi:10.1155/2020/8645161
  • Tiwana, M. H., Maqbool, K., & Mann, A. B. (2017). Homotopy perturbation Laplace transform solution of fractional non-linear reaction diffusion system of Lotka-Volterra type differential Equation. Engineering Science and Technology, 20(2), 672–678. doi:10.1016/j.jestch.2016.10.014
  • Veeresha, P., Prakasha, D. G., & Kumar, S. (2020). A fractional model for propagation of classical optical solitons by using nonsingular derivative. Mathematical Methods in the Applied Sciences, 1–15.
  • Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118(2972), 558–560. doi:10.1038/118558a0
  • Wu, Y., Wang, C., & Liao, S. (2005). Solving the one loop solution of the Vakhnenko equation by means of the homotopy analysis. Chaos, Solitons & Fractals, 23(5), 1733–1740. doi:10.1016/S0960-0779(04)00437-0
  • Xiao, D., & Ruan, S. (2001a). Codimension two bifurcations in a predator prey system with group defense. International Journal of Bifurcation and Chaos, 11(08), 2123–2131. doi:10.1142/S021812740100336X
  • Xiao, D., & Ruan, S. (2001b). Global dynamics of a ratio-dependent predator-prey system. Journal of Mathematical Biology, 43(3), 268–290. doi:10.1007/s002850100097
  • Yadav, L. K., Agarwal, G., Suthar, D. L., & Purohit, S. D. (2022). Time-fractional partial differential equations: A novel technique for analytical and numerical solutions. Arab Journal of Basic and Applied Sciences, 29(1), 86–98. doi:10.1080/25765299.2022.2064075
  • Zurigat, M., Momani, S., Odibat, Z., & Alawneh, A. (2010). The homotopy analysis method for handling system of fractional differential equations. Applied Mathematical Modelling, 34(1), 24–35. doi:10.1016/j.apm.2009.03.024