1,833
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effect of europium doping on the microstructural, optical and photocatalytic properties of ZnO nanopowders

, , , , , , , , , & show all
Pages 138-149 | Received 20 Oct 2021, Accepted 25 Apr 2022, Published online: 13 May 2022

References

  • Ahmad, I. (2019). Inexpensive and quick photocatalytic activity of rare earth (Er, Yb) co-doped ZnO nanoparticles for degradation of methyl orange dye. Separation and Purification Technology, 227, 115726. doi:10.1016/j.seppur.2019.115726
  • Al-Otaibi, A. L., Ghrib, T., Alqahtani, M., Alharbi, M. A., Hamdi, R., & Massoudi, I. (2019). Structural, optical and photocatalytic studies of Zn doped MoO3 nanobelts. Chemical Physics, 525, 110410. doi:10.1016/j.chemphys.2019.110410
  • Anju Chanu, L., Joychandra Singh, W., Jugeshwar Singh, K., & Nomita Dev, K. (2019). Effect of operational parameters on the photocatalytic degradation of methylene blue dye solution using manganese doped ZnO nanoparticles. Results in Physics, 12, 1230–1237. doi:10.1016/j.rinp.2018.12.089
  • Ashokkumar, M., & Muthukumaran, S. (2014). Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Optical Materials, 37, 671–678. doi:10.1016/j.optmat.2014.08.012
  • Ashrafi, A., & Jagadish, C. (2007). Review of zincblende ZnO: Stability of metastable ZnO phases. Journal of Applied Physics, 102(7), 071101. doi:10.1063/1.2787957
  • Ashtaputre, S. S., Nojima, A., Marathe, S. K., Matsumura, D., Ohta, T., Tiwari, R., … Kulkarni, S. K. (2008). Investigations of white light-emitting europium doped zinc oxide nanoparticles. Journal of Physics D: Applied Physics, 41(1), 015301. doi:10.1088/0022-3727/41/1/015301
  • Bao, Y., Wang, C., & Ma, J. (2016). Trisodium citrate as bridging and suppressing agent to control synthesis of ZnO hollow hierarchical microspheres and their photocatalytic properties. Ceramics International, 42(1), 1746–1755. doi:10.1016/j.ceramint.2015.09.133
  • Chebil, W., Fouzri, A., Fargi, A., Azeza, B., Zaaboub, Z., & Sallet, V. (2015). Characterization of ZnO thin films grown on different p-Si substrate elaborated by sol-gel spin-coating method. Materials Research Bulletin, 70, 719–727. doi:10.1016/j.materresbull.2015.06.003
  • Ciciliati, M. A., Silva, M. F., Fernandes, D. M., de Melo, M., Hechenleitner, A., & Pineda, E. (2015). Fe-doped ZnO nanoparticles: Synthesis by a modified sol–gel method and characterization. Materials Letters, 159, 84–86. doi:10.1016/j.matlet.2015.06.023
  • Dobrozhan, O., Opanasyuk, A., Kolesnyk, M., Demydenko, M., & Cheong, H. (2015). Substructural investigations, Raman, and FTIR spectroscopies of nanocrystalline ZnO films deposited by pulsed spray pyrolysis. Physica Status Solidi (a), 212(12), 2915–2921. doi:10.1002/pssa.201532324
  • Du, H., Wan, T., Qu, B., Scott, J., Lin, X., Younis, A., & Chu, D. (2017). Tailoring the multi-functionalities of one-dimensional ceria nanostructures via oxygen vacancy modulation. Journal of Colloid and Interface Science, 504, 305–314. doi:10.1016/j.jcis.2017.05.057
  • Gondal, M. A., Drmosh, Q. A., Yamani, Z. H., & Saleh, T. A. (2009). Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Applied Surface Science, 256(1), 298–304. doi:10.1016/j.apsusc.2009.08.019
  • Isai, K. A., & Shrivastava, V. S. (2019). Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: A comparative study. SN Applied Sciences, 1(10), 1247. doi:10.1007/s42452-019-1279-5
  • Jule, L. T., Dejene, F. B., Ali, A. G., Roro, K. T., Hegazy, A., Allam, N. K., & El Shenawy, E. (2016). Wide visible emission and narrowing bandgap in Cd-doped ZnO nanopowders synthesized via sol-gel route. Journal of Alloys and Compounds, 687, 920–926. doi:10.1016/j.jallcom.2016.06.176
  • Karimipour, M., Sadeghian, M., & Molaei, M. (2018). Fabrication of white light LED photocatalyst ZnO–rGO heteronanosheet hybrid materials. Journal of Materials Science: Materials in Electronics, 29(16), 13782–13793. doi:10.1007/s10854-018-9509-y
  • Khataee, A., Soltani, R., Hanifehpour, Y., Safarpour, M., Ranjbar, H. G., & Joo, S. W. (2014). Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation. Industrial & Engineering Chemistry Research, 53(5), 1924–1932. doi:10.1021/ie402743u
  • Klement, R., Drdlíkova, K., Kachlík, M., Drdlík, D., Galusek, D., & Maca, K. (2021). Photoluminescence and optical properties of Eu3+/Eu2+-doped transparent Al2O3 ceramics. Journal of the European Ceramic Society, 41(9), 4896–4906. doi:10.1016/j.jeurceramsoc.2021.03.029
  • Korake, P. V., Kadam, A. N., & Garadkar, K. M. (2014). Photocatalytic activity of Eu3+-doped ZnO nanorods synthesized via microwave assisted technique. Journal of Rare Earths, 32(4), 306–313. doi:10.1016/S1002-0721(14)60072-7
  • Kumar, R., Al-Dossary, O., Kumar, G., & Umar, A. (2015). Zinc oxide nanostructures for NO2 gas-sensor applications: A review. Nano-Micro Letters, 7(2), 97–120. doi:10.1007/s40820-014-0023-3
  • Kumar, V., Suman, S., Kumar, S., & Kumar, D. (2016). Synthesis and characterization of lanthanum doped zinc oxide nanoparticles. AIP Conference Proceedings, 1728, 020458. doi:10.1063/1.4946509
  • Landsiedel, R., Ma-Hock, L., Van Ravenzwaay, B., Schulz, M., Wiench, K., Champ, S., … Oesch, F. (2010). Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology, 4, 364–381. doi:10.3109/17435390.2010.506694
  • Luo, L., Zhu, L., & Wang, X. (2014). Study on Eu doped ZnO photocatalytic degradation of pharmaceutical wastewater. Applied Mechanics and Materials, 700, 482–486. doi:10.4028/www.scientific.net/AMM.700.482
  • Lv, P., Chen, S. C., Zheng, Q., Huang, F., & Ding, K. (2015). High electron mobility ZnO film for high-performance inverted polymer solar cells. Applied Physics Letters, 106(16), 163902. doi:10.1063/1.4918686
  • Mahdhi, H., Djessas, K., & Ben Ayadi, Z. (2018). Synthesis and characteristics of Ca-doped ZnO thin films by rf magnetron sputtering at low temperature. Materials Letters, 214, 10–14. doi:10.1016/j.matlet.2017.11.108
  • Malimabe, M. A., Dejene, B. F., Swart, H. C., Motloung, S. V., Motaung, T. E., & Koao, L. F. (2020). Characterization of the incorporated ZnO doped and co-doped with Ce3+ and Eu3+ nanophosphor powders into PVC polymer matrix. Journal of Molecular Structure, 1202, 127339. doi:10.1016/j.molstruc.2019.127339
  • Mesaros, A., Toloman, D., Nasui, M., Mos, R., Petrisor, T., Vasile, B., … Pana, O. (2015). A valence states approach for luminescence enhancement by low dopant concentration in Eu-doped ZnO nanoparticles. Journal of Materials Science, 50(18), 6075–6086. doi:10.1007/s10853-015-9157-z
  • Mihaiu, S., Szilágyi, I. M., Atkinson, I., Mocioiu, O. C., Hunyadi, D., Pandele-Cusu, J., … Zaharescu, M. (2016). Thermal study on the synthesis of the doped ZnO to be used in TCO films. Journal of Thermal Analysis and Calorimetry, 124(1), 71–80. doi:10.1007/s10973-015-5147-2
  • Mirabbaszadeh, K., Ahmadi, M., Khosravi, M., Mokhtari, R., & Salari, S. (2013). Hydrothermal synthesis of vertically aligned cesium-doped ZnO nanorods for solar cell applications. Journal of Inorganic and Organometallic Polymers and Materials, 23(6), 1219–1225. doi:10.1007/s10904-013-9903-0
  • Mousavi, S. B., & Heris, S. Z. (2020). Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil. International Journal of Hydrogen Energy, 45(43), 23603–23614. doi:10.1016/j.ijhydene.2020.05.259
  • Ntwaeaborwa, O. M., Mofokeng, S. J., Kumar, V., & Kroon, R. E. (2017). Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 182, 42–49. doi:10.1016/j.saa.2017.03.067
  • Pal, P. P., & Manam, J. (2014). Color tunable ZnO nanorods by Eu3+ and Tb3+ co-doping for optoelectronic applications. Applied Physics A, 116(1), 213–223. doi:10.1007/s00339-013-8095-3
  • Park, K., Hakeem, D. A., Pi, J. W., & Jung, G. W. (2019). Emission enhancement of Eu3+-doped ZnO by adding charge compensators. Journal of Alloys and Compounds, 772, 1040–1051. doi:10.1016/j.jallcom.2018.08.278
  • Patel, M., Kim, H.-S., Kim, J., Yun, J.-H., Kim, S. J., Choi, E. H., & Park, H.-H. (2017). Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration. Solar Energy Materials and Solar Cells, 170, 246–253. doi:10.1016/j.solmat.2017.06.006
  • Pessoni, H., Maia, L., & Franco, A., Jr. (2015). Eu-doped ZnO nanoparticles prepared by the combustion reaction method: Structural, photoluminescence and dielectric characterization. Materials Science in Semiconductor Processing, 30, 135–114. doi:10.1016/j.mssp.2014.09.039
  • Phuruangrat, A., Yayapao, O., Thongtem, T., & Thongtem, S. (2014). Synthesis and characterization of europium-doped zinc oxide photocatalyst. Journal of Nanomaterials, 2014, 1–9. doi:10.1155/2014/367529
  • Ponnamma, D., Cabibihan, J.-J., Rajan, M., Pethaiah, S. S., Deshmukh, K., Gogoi, J. P., … Chandrashekar, B. (2019). Synthesis, optimization and applications of ZnO/polymer nanocomposites. Materials Science & Engineering. C, Materials for Biological Applications, 98, 1210–1240. doi:10.1016/j.msec.2019.01.081
  • Rajput, V., & Pandey, N. (2017). Moisture sensing studies of CuO-ZnO nanocomposites. International Journal of Applied Ceramic Technology, 14(1), 77–83. doi:10.1111/ijac.12620
  • Rami, J. M., Patel, C. D., Patel, C. M., & Patel, M. V. (2020). Green ZnO nanorod material for dye degradation and detoxification of pharmaceutical wastes in water. Journal of Environmental Chemical Engineering, 8, 104295. doi:10.1016/j.jece.2020.104295
  • Rathnasamy, R., Thangasamy, P., Thangamuthu, R., Sampath, S., & Alagan, V. (2017). Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. Journal of Materials Science: Materials in Electronics, 28(14), 10374–10381. doi:10.1007/s10854-017-6807-8
  • Ravichandran, A. T., & Karthick, R. (2020). Enhanced photoluminescence, structural, morphological and antimicrobial efficacy of Co-doped ZnO nanoparticles prepared by co-precipitation method. Results in Materials, 5, 100072. doi:10.1016/j.rinma.2020.100072
  • Ren, S., Dong, W., Tang, H., Tang, L., Li, Z., Sun, Q., … Zhao, J. (2019). High-efficiency magnetic modulation in Ti/ZnO/Pt resistive random-access memory devices using amorphous zinc oxide film. Applied Surface Science, 488, 92–97. doi:10.1016/j.apsusc.2019.05.129
  • Salem, M., Akir, S., Ghrib, T., Daoudi, K., & Gaidi, M. (2016). Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films. Journal of Alloys and Compounds, 685, 107–113. doi:10.1016/j.jallcom.2016.05.254
  • Samanta, P. K. (2020). Band gap engineering, quantum confinement, defect mediated broadband visible photoluminescence and associated quantum states of size tuned zinc oxide nanostructures. Optik, 221, 165337. doi:10.1016/j.ijleo.2020.165337
  • Sehar, S., Naz, I., Rehman, A., Sun, W., Alhewairini, S. S., Zahid, M. N., & Younis, A. (2021). Shape-controlled synthesis of cerium oxide nanoparticles for efficient dye photodegradation and antibacterial activities. Applied Organometallic Chemistry, 35(1), e6069. doi:10.1002/aoc.6069
  • Shaat, S. K. K., Musleh, H., Zayed, H., Asad, J., & AlDaho udi, N. (2020). Structural parameters of hydrothermally synthesized ZnO nanostructure and their based solar cells. Nano-Structures & Nano-Objects, 23, 100515. doi:10.1016/j.nanoso.2020.100515
  • Shannon, R. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751–767. doi:10.1107/S0567739476001551
  • Shashanka, R., Esgin, H., Yilmaz, V. M., & Caglar, Y. (2020). Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. Journal of Science: Advanced Materials and Devices, 5, 185–191. doi:10.1016/j.jsamd.2020.04.0052468
  • Shinde, K., Pawar, R., Sinha, B., Kim, H., Oh, S., & Chung, K. (2014). Study of effect of planetary ball milling on ZnO nanopowder synthesized by co-precipitation. Journal of Alloys and Compounds, 617, 404–407. doi:10.1016/j.jallcom.2014.08.030
  • Singh, R., King, A., & Nayak, B. B. (2020). Influence of calcination temperature on phase, powder morphology and photoluminescence characteristics of Eu-doped ZnO nanophosphors prepared using sodium borohydride. Journal of Alloys and Compounds, 847, 156382. doi:10.1016/j.jallcom.2020.156382
  • Trandafilović, L. V., Jovanović, D. J., Zhang, X., Ptasińska, S., & Dramićanin, M. D. (2017). Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. Applied Catalysis B, 203, 740–752. doi:10.1016/j.apcatb.2016.10.063
  • Vijayaprasath, G., Murugan, R., Palanisamy, S., Prabhu, N. M., Mahalingam, T., Hayakawa, Y., & Ravi, G. (2015). optical and antibacterial activity studies of neodymium-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 26(10), 7564–7576. doi:10.1007/s10854-015-3393-5
  • Vinoditha, U., Sarojini, B., Sandeep, K., Narayana, B., Maidur, S., Patil, P., & Balakrishna, K. (2019). Defects-induced nonlinear saturable absorption mechanism in europium-doped ZnO nanoparticles synthesized by facile hydrothermal method. Applied Physics A, 125(6), 125–436. doi:10.1007/s00339-019-2732-4
  • Wang, H., & Xie, C. (2008). Effect of annealing temperature on the microstructures and photocatalytic property of colloidal ZnO nanoparticles. Journal of Physics and Chemistry of Solids, 69(10), 2440–2444. doi:10.1016/j.jpcs.2008.04.036
  • Wang, Y., Zhang, X., & Hou, C. (2018). Facile synthesis of Al-doping 1D ZnO nanoneedles by co-precipitation method for efficient removal of methylene blue. Nano-Structures & Nano-Objects, 16, 250–257. doi:10.1016/j.nanoso.2018.07.001
  • Williamson, G., & Hall, W. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1(1), 22–31. doi:10.1016/0001-6160(53)90006-6
  • Yadav, H., Sinha, N., Goel, S., & Kumar, B. (2016). Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications. Journal of Alloys and Compounds, 689, 333–341. doi:10.1016/j.jallcom.2016.07.329
  • Younis, A., Shirsath, S. E., Shabbir, B., & Li, S. (2018). Controllable dynamics of oxygen vacancies through extrinsic doping for superior catalytic activities. Nanoscale, 10(39), 18576–18585. doi:10.1039/C8NR03801E
  • Zhu, Y., & Zhou, Y. (2008). Preparation of pure ZnO nanoparticles by a simple solid-state reaction method. Applied Physics A, 92(2), 275–278. doi:10.1007/s00339-008-4533-z