1,029
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The role of strontium on the enhancement of photocatalytic response of TiO2 nanotubes – application in methylene blue and formic acid photodegradation under visible light and UV-A

ORCID Icon
Pages 162-174 | Received 02 Oct 2021, Accepted 14 May 2022, Published online: 28 May 2022

References

  • Ahmad, A., Mohd-Setapar, S. H., Chuong, C. S., Khatoon, A., Wani, W. A., Kumar, R., & Rafatullah, M. (2015). Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Advances, 5(39), 30801–30818. doi:10.1039/C4RA16959J
  • Alencar, L., Passos, L. M. S., Soares, C. M. F., Lima, A. S., & Souza, R. L. (2020). Efficiency method for methylene blue recovery using aqueous two-phase systems based on cholinium-ionic liquids. Journal of Fashion Technology & Textile Engineering, 6, 13–20. doi:10.19080/CTFTTE.2020.06.555678
  • Alkaim, A. F., Aljeboree, A. M., Alrazaq, N. A., Baqir, S. J., Hussein, F. H., & Lilo, A. J. (2014). Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian Journal of Chemistry, 26(24), 8445–8448. doi:10.14233/ajchem.2014.17908
  • Alkaykh, S., Mbarek, A., & Ali-Shattle, E. E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon, 6(4), e03663. 10.1016/j.heliyon.2020.e03663.
  • Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A. A., Amin, M. O., & Madkour, M. (2018). The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Scientific Reports, 8(1), 7104. 10.1038/s41598-018-25673-5.
  • Barnes, R. J., Molina, R., Xu, J., Dobson, P. J., & Thompson, I. P. (2013). Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria. Journal of Nanoparticle Research, 15(2), 1432. doi:10.1007/s11051-013-1432-9
  • Bilińska, L., & Gmurek, M. (2021). Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actionsdye by-products removal by catalytic and synergistic actions. Water Resources and Industry, 26, 100160. doi:10.1016/j.wri.2021.100160
  • Chakhtouna, H., Benzeid, H., Zari, N., Qaiss, A. E. K., & Bouhfid, R. (2021). Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors. Environmental Science and Pollution Research International, 28(33), 44638–44666. doi:10.1007/s11356-021-14996-y
  • Choudhury, B., Borah, B., & Choudhury, A. (2013). Ce–Nd codoping effect on the structural and optical properties of TiO2 nanoparticles. Materials Science and Engineering: B, 178(4), 239–247. doi:10.1016/j.mseb.2012.11.017
  • Derakhshan, Z., Baghapour, M. A., Ranjbar, M., & Faramarzian, M. (2013). Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: kinetics and equilibrium studies. Health Scope, 2(3), 136–144. doi:10.17795/jhealthscope-12492
  • Di Valentin, C., Pacchioni, G., & Selloni, A. (2009). Reduced and n type doped TiO2: Nature of Ti3+ species. The Journal of Physical Chemistry C, 113(48), 20543–20552. doi:10.1021/jp9061797
  • Hamisu, A., Gaya, U., & Gaya, A. (2020). Effect of alkali strength on the hydrothermal growth of photoactive TiO2 nanowires. Journal of Nanostructures, 10(3), 639–651. doi:10.22052/JNS.2020.03.017
  • Janczarek, M., & Kowalska, E. (2021). Defective dopant-free TiO2 as an efficient visible light-active photocatalyst. Catalysts, 11(8), 978. doi:10.3390/catal11080978
  • Jorcin, J. B., Orazem, M. E., Pébère, N., & Tribollet, B. (2006). CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 51(8–9), 1473–1479. doi:10.1016/j.electacta.2005.02.128
  • Keerthana, S. P., Yuvakkumar, R., Ravi, G., Hong, S. I., Al-Sehemi, A. G., & Velauthapillai, D. (2022). Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere, 293, 133540. doi:10.1016/j.chemosphere.2022.133540
  • Komornicki, S., Radecka, M., & Rekas, M. (2001). Frequency-dependent electrical properties in the system SnO2-TiO2. Journal of Materials Science: Materials in Electronics, 12(1), 11–16. doi:10.1023/A:1011208310147
  • Lei, Y., Zhang, L. D., Meng, G. W., Li, G. H., Zhang, X. Y., Liang, C. H., … Wang, S. X. (2001). Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Applied Physics Letters, 78(8), 1125–1127. doi:10.1063/1.1350959
  • Li, W., Liang, R., Zhou, N. Y., & Pan, Z. (2020). Carbon black-doped anatase TiO2 nanorods for solar light-induced photocatalytic degradation of methylene blue. ACS Omega, 5(17), 10042–10051. doi:10.1021/acsomega.0c00504
  • Li, F. B., Li, X. Z., Hou, M. F., Cheah, K. W., & Choy, W. C. H. (2005). Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Applied Catalysis A: General, 285(1-2), 181–189. doi:10.1016/j.apcata.2005.02.025
  • Liu, S. H. (1985). Fractal model for the ac response of a rough interface. Physical Review Letters, 55(5), 529–532. doi:10.1103/PhysRevLett.55.529
  • Liu, L., Jiang, W., Song, X., Duan, Q., & Zhu, E. (2020). A novel strategy of lock-in effect between conjugated polymer and TiO2 towards dramatic enhancement of photocatalytic activity under visible light. Scientific Reports, 10(1), 6513. doi:10.1038/s41598-020-63623-2
  • Liu, J., Li, J., Sedhain, A., Lin, J., & Jiang, H. (2008). Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. The Journal of Physical Chemistry C, 112(44), 17127–17132. doi:10.1021/jp8060653
  • Liu, X., Lv, S., Fan, B., Xing, A., & Jia, B. (2019). Ferroelectric polarization-enhanced photocatalysis in BaTiO3-TiO2 core-shell heterostructures. Nanomaterials, 9(8), 1116. doi:10.3390/nano9081116
  • Liu, G., Yang, H. G., Wang, X., Cheng, L., Lu, H., Wang, L., … Cheng, H.-M. (2009). Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets. The Journal of Physical Chemistry C, 113(52), 21784–21788. doi:10.1021/jp907749r
  • Li, H., Zhang, T., Pan, C., Pu, C., Hu, Y., Hu, X., … Fan, J. (2017). Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photocatalytic activities. Applied Surface Science, 391, 303–310. doi:10.1016/j.apsusc.2016.06.167
  • Lu, D., Wang, H., Zhao, X., Kondamareddy, K. K., Ding, J., Li, C., & Fang, P. (2017). Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustainable Chemistry & Engineering, 5(2), 1436–1445. doi:10.1021/acssuschemeng.6b02010
  • Machado, W. A., & da Hora Machado, A. E. (2020). Characterization and evaluation of the photocatalytic activity of oxides based on TiO2 synthesized by hydrolysis controlled by the use of water/acetone mixtures. PeerJ Materials Science, 2, e11. doi:10.7717/peerj-matsci.11
  • Meksi, M., Turki, A., Kochkar, H., Bousselmi, L., Guillard, C., & Berhault, G. (2016). The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes. Applied Catalysis B: Environmental, 181, 651–660. doi:10.1016/j.apcatb.2015.08.037
  • Mohammed Redha, Z., Abdulla Yusuf, H., Amin, R., & Bououdina, M. (2020). The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm. Arab Journal of Basic and Applied Sciences, 27(1), 287–298. doi:10.1080/25765299.2020.1800163
  • Ohtani, B. (2010). Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157–178. doi:10.1016/j.jphotochemrev.2011.02.001
  • Okla, M. K., Harini, G., Dawoud, T. M., Akshhayya, C., Mohebaldin, A., AL-ghamdi, A. A., … Khan, S. S. (2022). Fabrication of MnFe2O4 spheres modified CeO2 nano-flakes for sustainable photodegradation of MB dye and antimicrobial activity: A brief computational investigation on reactive sites and degradation pathway. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, 128566. doi:10.1016/j.colsurfa.2022.128566
  • Pandey, S., Do, J. Y., Kim, J., & Kang, M. (2020). Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent. International Journal of Biological Macromolecules, 143, 60–75. doi:10.1016/j.ijbiomac.2019.12.002
  • Rao, H., Lu, Z., Liu, X., Ge, H., Zhang, Z., Zou, P., … Wang, Y. (2016). Visible light-driven photocatalytic degradation performance for methylene blue with different multi-morphological features of ZnS. RSC Advances, 6(52), 46299–46307. doi:10.1039/C6RA05212F
  • Salama, A., Mohamed, A., Aboamera, N. M., Osman, T. A., & Khattab, A. (2018). Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation. Applied Nanoscience, 8(1-2), 155–161. doi.org/ doi:10.1007/s13204-018-0660-9
  • Sarfraz, N., Khan, I., Sarfaraz, N., Khan, I., Sarfraz, N., & Khan, I. (2021). Plasmonic gold nanoparticles (AuNPs): properties, synthesis and their advanced energy, environmental and biomedical applications. Chemistry, an Asian Journal, 16(7), 720–742. doi:10.1002/asia.202001202.
  • Scepanovic, M. J., Grujic-Brojcin, M., Dohcevic-Mitrovic, Z. D., & Popovic, Z. V. (2007). Temperature dependence of the lowest frequency Eg Raman mode in laser-synthesized anatase TiO2 nanopowder. Applied Physics A, 86, 365–371. doi:10.1007/s00339-006-3775-x
  • Sdiri, N., Elhouichet, H., Azeza, B., & Mokhtar, F. (2013). Studies of (90-x) P2O5xB2O310Fe2O3 glasses by Mossbauer effect and impedance spectroscopy methods. Journal of Non-Crystalline Solids, 371–372, 22–27. doi:10.1016/j.jnoncrysol.2013.04.002
  • Secundino-Sánchez, O., Díaz-Reyes, J., Sánchez-Ramírez, J. F., Arias-Cerón, J. S., Galván-Arellano, M., & Vázquez-Cuchillo, O. (2022). Controlled synthesis of electrospun TiO2 nanofibers and their photocatalytic application in the decolouration of Remazol Black B azo dye. Catalysis Today, 392–393, 13–22. doi:10.1016/j.cattod.2021.10.003
  • Singh, R. K., Behera, S. S., Singh, K. R., Mishra, S., Panigrahi, B., Sahoo, T. R., … Mandal, D. (2020). Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112704. doi:10.1016/j.jphotochem.2020.112704
  • Waimbo, M., Anduwan, G., Renagi, O., Badhula, S., Michael, K., Park, J., … Kim, Y. S. (2020). Improved charge separation through H2O2 assisted copper tungstate for enhanced photocatalytic efficiency for the degradation of organic dyes under simulated sun light. Journal of Photochemistry and Photobiology. B, Biology, 204, 111781. doi:10.1016/j.jphotobiol.2020.111781
  • Wang, Z., Gao, M., Li, X., Ning, J., Zhou, Z., & Li, G. (2020). Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins. Materials Science & Engineering. C, Materials for Biological Applications, 108, 110196. doi:10.1016/j.msec.2019.110196
  • Wang, X., Hu, C., An, H., Zhu, D., Zhong, Y., Wang, D., … Zhou, H. (2021). Photocatalytic removal of MB and hydrogen evolution in water by (Sr0.6Bi0.305)2Bi2O7/TiO2 heterostructures under visible-light irradiation. Applied Surface Science, 544, 148920. doi:10.1016/j.apsusc.2020.148920
  • Wu, F., Li, X., Liu, W., & Zhang, S. (2017). Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nano hetero junctions. Applied Surface Science, 405, 60–70. doi:10.1016/j.apsusc.2017.01.285
  • Xue, W., Zhang, G., Xu, X., Yang, X., Liu, C., & Xu, Y. (2011). Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate. Chemical Engineering Journal, 167(1), 397–402. doi:10.1016/j.cej.2011.01.007
  • Zhang, J., Bang, J. H., Tang, C., & Kamat, P. V. (2010). Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance . ACS Nano, 4(1), 387–395. doi:10.1021/nn901087c
  • Zhang, Z., Jing, W., Tan, X., Yu, T., & Ma, J. (2018). High-efficiency photocatalytic performance of Cr–SrTiO3-modified black TiO2 nanotube arrays. Journal of Materials Science, 53(8), 6170–6182. doi:10.1007/s10853-017-1977-6
  • Zhang, Z., Li, X., Chen, H., Shao, G., Zhang, R., & Lu, H. (2018). Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nanocomposites by microwave-assisted method. Materials Research Express, 5(1), 015021. doi:10.1088/2053-1591/aaa1dc
  • Zhang, L., Yang, H., Xie, X., Zhang, F., & Li, L. (2009). Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening. Journal of Alloys and Compounds, 473(1-2), 65–70. doi:10.1016/j.jallcom.2008.06.018
  • Zhu, L., Hong, M., & Ho, G. W. (2015). Fabrication of wheat grain textured TiO2/CuO composite nanofibers for enhanced solar H2 generation and degradation performance. Nano Energy, 11, 28–37. doi:10.1016/j.nanoen.2014.09.032
  • Zong, M., Song, D., Zhang, X., Huang, X., Lu, X., & Rosso, K. M. (2021). Facet-dependent photodegradation of methylene blue by hematite nanoplates in visible light. Environmental Science & Technology, 55(1), 677–688. doi:10.1021/acs.est.0c05592