773
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Closed-form formula for a classical system of matrix equations

, , , &
Pages 258-268 | Received 14 Feb 2022, Accepted 10 Aug 2022, Published online: 25 Aug 2022

References

  • Artidiello, S., Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2019). Generalized inverses estimations by means of iterative methods with memory. Mathematics, 8(1), 2. doi:10.3390/math8010002
  • Bai, Z. Z. (2011). On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations. Journal of Computational Mathematics, 29(2), 185–198. doi:10.4208/jcm.1009-m3152
  • Baksalary, J. K., & Kala, R. (1979). The matrix equation AX−YB=C. Linear Algebra and Its Applications, 25, 41–43.
  • Bapat, R. B., Bhaskara, K. P. S., & Prasad, K. M. (1990). Generalized inverses over integral domains. Linear Algebra and Its Applications, 140, 181–196. doi:10.1016/0024-3795(90)90229-6
  • Byers, R., & Rhee, N. H. (1995). Cyclic Schur and Hessenberg-Schur numerical methods for solving periodic Lyapunov and Sylvester equations [Technical report]. Department of Mathematics, University of Missouri, Kansas.
  • Che, X., Li, M., Zhang, X., Alassafi, M. O., & Zhang, H. (2022). Communication architecture of power monitoring system based on incidence matrix model. Applied Mathematics and Nonlinear Sciences, 7(1), 83–92. doi:10.2478/amns.2021.1.00098
  • Darouach, M. (2006). Solution to Sylvester equation associated to linear descriptor systems. Systems and Control Letters, 55(10), 835–838. doi:10.1016/j.sysconle.2006.04.004
  • Deng, Y. B., & Hu, X. Y. (2005). On solutions of matrix equation AXAT+BYBT=C. Journal of Computational Mathematics, 23, 17–26.
  • Ding, F. (2013a). Decomposition based fast least squares algorithm for output error systems. Signal Processing, 93(5), 1235–1242. doi:10.1016/j.sigpro.2012.12.013
  • Ding, F. (2013b). Two-stage least squares based iterative estimation algorithm for CARARMA system modeling. Applied Mathematical Modelling, 37(7), 4798–4808. doi:10.1016/j.apm.2012.10.014
  • Ding, F., & Chen, T. (2005). Iterative least squares solutions of coupled Sylvester matrix equations. Systems & Control Letters, 54(2), 95–107. doi:10.1016/j.sysconle.2004.06.008
  • Ding, F., & Chen, T. (2006). On iterative solutions of general coupled matrix equations. SIAM Journal on Control and Optimization, 44(6), 2269–2284. doi:10.1137/S0363012904441350
  • Ding, F., & Zhang, H. M. (2014). Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems. IET Control Theory & Applications, 8(15), 1588–1595. doi:10.1049/iet-cta.2013.1044
  • Ding, F., Liu, X. G., & Chu, J. (2013). Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory & Applications, 7(2), 176–184. doi:10.1049/iet-cta.2012.0313
  • Ding, F., Liu, Y. J., & Bao, B. (2012). Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(1), 43–55. doi:10.1177/0959651811409491
  • Gavin, K. R., & Bhattacharyya, S. P. (1983). Robust and well-conditioned eigenstructure assignment via Sylvester’s equation. Optimal Control Applications & Methods, 4(3), 205–212. doi:10.1002/OCA.4660040302
  • Guo, W., & Huang, T. (2010). Method of elementary transformation to compute Moore-Penrose inverse. Applied Mathematics and Computation, 216(5), 1614–1617. doi:10.1016/j.amc.2010.03.016
  • Hajarian, M. (2015). Developing CGNE algorithm for the periodic discrete-time generalized coupled Sylvester matrix equations. Computational and Applied Mathematics, 34(2), 755–771. doi:10.1007/s40314-014-0138-7
  • He, Z. H., & Wang, Q. W. (2014). A pair of mixed generalized Sylvester matrix equations, Journal of Shanghai University. Natural Science, 20, 138–156.
  • He, Z. H., Liu, J., & Tam, T. Y. (2017). The general ϕ-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations. Electronic Journal of Linear Algebra, 32, 475–499.
  • He, Z. H., Wang, Q. W., & Zhang, Y. (2018). A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica, 87, 25–31. doi:10.1016/j.automatica.2017.09.008
  • Jonsson, I., & Kågström, B. (2002). Recursive blocked algorithms for solving triangular systems-Part II: Two-sided and generalized Sylvester and Lyapunov matrix equations. ACM Transactions on Mathematical Software, 28(4), 416–435. doi:10.1145/592843.592846
  • Kumar, S., Kumar, R., Osman, M. S., & Samet, B. (2020). A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numerical Methods for Partial Differential Equations, 37, 1250–1268. doi:10.1002/num.22577
  • Kyrchei, I. I. (2008). Analogs of the adjoint matrix for generalized inverses and corresponding Cramer rules. Linear and Multilinear Algebra, 56(4), 453–469. doi:10.1080/03081080701352856
  • Kyrchei, I. I. (2011). Determinantal representations of the Moore-Penrose inverse over the quaternion skew field and corresponding Cramer’s rules. Linear and Multilinear Algebra, 59(4), 413–431. doi:10.1080/03081081003586860
  • Kyrchei, I. I. (2012). Analogs of Cramer’s rule for the minimum norm least squares solutions of some matrix equations. Applied Mathematics and Computation, 218(11), 6375–6384. doi:10.1016/j.amc.2011.12.004
  • Kyrchei, I. I. (2017a). Determinantal representations of the Drazin and W-weighted Drazin inverses over the quaternion skew field with applications. In S. Griffin (Ed.), Quaternions: Theory and applications (pp. 201–275). New York: Nova Science Publishers.
  • Kyrchei, I. I. (2017b). Determinantal representations of the quaternion weighted Moore-Penrose inverse and its applications. In A. R. Baswell (Ed.), Advances in mathematics research (Vol. 23, pp. 35–96). New York: Nova Science Publishers.
  • Kyrchei, I. I. (2018a). Determinantal representations of solutions and hermitian solutions to some system of two-sided quaternion matrix equations. Journal of Mathematics, 2018, 1–12. doi:10.1155/2018/6294672
  • Kyrchei, I. I. (2018b). Explicit determinantal representation formulas for the solution of the two-sided restricted quaternionic matrix equation. Journal of Applied Mathematics and Computing, 58(1-2), 335–365. doi:10.1007/s12190-017-1148-6
  • Kyrchei, I. I. (2019). Cramer’s rules of η-(skew-)Hermitian solutions to the quaternion Sylvester-type matrix equations. Advances in Applied Clifford Algebras, 29(3), 56. doi:10.1007/s00006-019-0972-1
  • Kyrchei, I. I. (2019). Determinantal representations of general and (skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrix equation. Abstract and Applied Analysis, 2019, 1–14. doi:10.1155/2019/5926832
  • Kyrchei, I. I. (2021). Determinantal representations of solutions to systems of two-sided quaternion matrix equations. Linear and Multilinear Algebra, 69(4), 648–672. doi:10.1080/03081087.2019.1614517
  • Lee, S. G., & Vu, Q. P. (2012). Simultaneous solutions of matrix equations and simultaneous equivalence of matrices. Linear Algebra and Its Applications, 437(9), 2325–2339. doi:10.1016/j.laa.2012.06.004
  • Li, M. H., & Liu, X. M. (2018a). Auxiliary model based least squares iterative algorithms for parameter estimation of bilinear systems using interval-varying measurements. IEEE Access, 6, 21518–21529. doi:10.1109/ACCESS.2018.2794396
  • Li, M. H., & Liu, X. M. (2018b). The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Processing, 147, 23–34. doi:10.1016/j.sigpro.2018.01.012
  • Li, R. C. (2000). A bound on the solution to a structured Sylvester equation with an application to relative perturbation theory. SIAM Journal on Matrix Analysis and Applications, 21(2), 440–445. doi:10.1137/S0895479898349586
  • Lin, Y. Q., & Wei, Y. M. (2007). Condition numbers of the generalized Sylvester equation. IEEE Transactions on Automatic Control, 52(12), 2380–2385. doi:10.1109/TAC.2007.910727
  • Liu, Y. H., & Tian, Y. G. (2011). A simultaneous decomposition of a matrix triplet with applications. Numerical Linear Algebra with Applications, 18(1), 69–85. doi:10.1002/nla.701
  • Ma, J. (2021). Analysis of the properties of matrix rank and the relationship between matrix rank and matrix operations. Applied Mathematics and Nonlinear Sciences. (aop), 1–10. doi:10.2478/amns.2021.2.00139
  • Marsaglia, G., & Styan, G. P. H. (1974). Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra, 2, 269–292.
  • Osman, M. S., & Machado, J. A. T. (2018). New nonautonomous combined multi-wave solutions for (2 + 1)-dimensional variable coefficients KdV equation. Nonlinear Dynamics, 93(2), 733–740. doi:10.1007/s11071-018-4222-1
  • Rehman, A., Kyrchei, I. I., Ali, I., Akram, M., & Shakoor, A. (2019). The general solution of quaternion matrix equation having η-skew-Hermicity and its Cramer’s rule. Mathematical Problems in Engineering, 2019, 1–25. doi:10.1155/2019/7939238
  • Rehman, A., Kyrchei, I. I., Ali, I., Akram, M., & Shakoor, A. (2020). Explicit formulas and determinantal representation for η-skew-Hermitian solution to a system of quaternion matrix equations. Filomat, 34(8), 2601–2627. doi:10.2298/FIL2008601R
  • Rehman, A., Kyrchei, I. I., Ali, I., Akram, M., & Shakoor, A. (2021). Constraint solution of a classical system of quaternion matrix equations and its Cramer’s rule. Iranian Journal of Science and Technology, Transactions A: Science, 45(3), 1015–1024. doi:10.1007/s40995-021-01083-7
  • Roth, W. E. (1952). The equations AX−YB=C and AX−XB=C in matrices. Proceedings of the American Mathematical Society, 3, 392–396.
  • Sayevand, K., Pourdarvish, A., Machado, J. A. T., & Erfanifar, R. (2021). On the calculation of the Moore-Penrose and Drazin inverses: Application to fractional calculus. Mathematics, 9(19), 2501. doi:10.3390/math9192501
  • Stanimirovic, P. S. (1996). General determinantal representation of pseudoinverses of matrices. Matematicki Vesnik, 48, 1–9.
  • Syrmos, V. L., & Lewis, F. L. (1993). Output feedback Eigen structure assignment using two Sylvester equations. IEEE Transactions on Automatic Control, 38(3), 495–499. doi:10.1109/9.210155
  • Syrmos, V. L., & Lewis, F. L. (1994). Coupled and constrained Sylvester equations in system design. Circuits, Systems, and Signal Processing, 13(6), 663–694. doi:10.1007/BF02523122
  • Wang, Q. W., & He, Z. H. (2013). Solvability conditions and general solution for the mixed Sylvester equations. Automatica, 49(9), 2713–2719. doi:10.1016/j.automatica.2013.06.009
  • Wang, Q. W., & He, Z. H. (2014). Systems of coupled generalized Sylvester matrix equations. Automatica, 50(11), 2840–2844. doi:10.1016/j.automatica.2014.10.033
  • Wang, Q. W., Rehman, A., He, Z. H., & Zhang, Y. (2016). Constraint generalized Sylvester matrix equations. Automatica, 69, 60–74. doi:10.1016/j.automatica.2016.02.024
  • Wimmer, H. K. (1994). Consistency of a pair of generalized Sylvester equations. IEEE Transactions on Automatic Control, 39(5), 1014–1016. doi:10.1109/9.284883
  • Xu, L. (2015). Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. Journal of Computational and Applied Mathematics, 288, 33–43. doi:10.1016/j.cam.2015.03.057
  • Xu, L. (2016). The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Processing, 120, 660–667. doi:10.1016/j.sigpro.2015.10.009
  • Xu, L. (2017). The parameter estimation algorithms based on the dynamical response measurement data. Advances in Mechanical Engineering, 9(11), 168781401773000–168781401773012. doi:10.1177/1687814017730003
  • Xu, L., Chen, L., & Xiong, W. L. (2015). Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dynamics, 79(3), 2155–2163. doi:10.1007/s11071-014-1801-7