582
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of time-fractional mathematical model of COVID-19 with nonsingular kernel

& ORCID Icon
Pages 307-317 | Received 25 Jun 2021, Accepted 25 Aug 2022, Published online: 14 Sep 2022

References

  • Abdeljawad, T., & Baleanu, D. (2016). Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Advances in Difference Equations, 2016(1), 232. doi:10.1186/s13662-016-0949-5
  • Atangana, A., & Baleanu, D. (2016). New fractional derivatives with non-local and nonsingular kernel: Theory and application to heat transfer model. Thermal Science, 20(2), 763–769. doi:10.2298/TSCI160111018A
  • Atangana, A., & Gömez-Aguilar, J. F. (2017). A new derivative with normal distribution kernel: Theory, methods and applications. Physica A: Statistical Mechanics and Its Applications. 476, 1–14. doi:10.1016/j.physa.2017.02.016
  • Atangana, A., & Gömez-Aguilar, J. F. (2018a). Fractional derivatives with no-index law property: Application to chaos and statistics. Chaos, Solitons & Fractals, 114, 516–535. doi:10.1016/j.chaos.2018.07.033
  • Atangana, A., & Gömez-Aguilar, J. F. (2018b). Numerical approximation of Riemann–Liouville definition of fractional derivative: From Riemann–Liouville to Atangana–Baleanu. Numerical Methods for Partial Differential Equations, 34(5), 1502–1523. doi:10.1002/num.22195
  • Bogoch, I. I., Watts, A., Thomas-Bachli, A., Huber, C., Kraemer, M. U. G., & Khan, K. (2020). Pneumonia of unknown etiology in Wuhan, China: Potential for international spread via commercial air travel. Journal of Travel Medicine, 27(2), taaa008. doi:10.1093/jtm/taaa008
  • Brauer, F., & Castillo-Chavez, C. (2001). Mathematical Models in Population Biology and Epidemiology. In Texts in Applied Math, Vol. 40. Newyork: Springer.
  • Cao, J., Xia, J., & Zhao, B. (2020). Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures. Journal of Biomedical Research & Innovation, 1(1), 1–19.
  • Caputo, M. (1967). Linear model of dissipation whose Q is almost frequency independent II. Geophysical Journal International, 13(5), 529–539. doi:10.1111/j.1365-246X.1967.tb02303.x
  • Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1, 73–85.
  • Chen, T. M., Rui, J., Wang, Q. P., Zhao, Z. Y., Cui, J. A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9(1), 24–28. doi:10.1186/s40249-020-00640-3
  • Chowell, G., Fenimore, P. W., & Castillo-Garsow, M. A. (2003). SARS outbreak in Ontario Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism, Los Alamos Unclassified Report LA-UR-03-2653.
  • Dokuyucu, M. A., Celik, E., Bulut, H., & Baskonu, H. M. (2018). Cancer treatment model with the Caputo–Fabrizio fractional derivative. The European Physical Journal Plus, 133, 1–6.
  • Furati, K. M., Kassim, M. D., & Tatar, N. T. (2012). Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers & Mathematics with Applications. 64(6), 1616–1626. doi:10.1016/j.camwa.2012.01.009
  • He, J. H. (2014). A tutorial review on fractal spacetime and fractional calculus. International Journal of Theoretical Physics, 53(11), 3698–3718. doi:10.1007/s10773-014-2123-8
  • He, J. H. (2018). Fractal calculus and its geometrical explanation. Results in Physics, 10, 272–276. doi:10.1016/j.rinp.2018.06.011
  • He, J. H., & Ain, Q. T. (2020). New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle. Thermal Science, 24(2 Part A), 659–681. doi:10.2298/TSCI200127065H
  • He, J. H., Elagan, S. K., & Li, Z. B. (2012). Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Physics Letters A, 376(4), 257–259. doi:10.1016/j.physleta.2011.11.030
  • He, J. H., & El-Dib, Y. O. (2020). Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation. Results in Physics, 19, 103345. doi:10.1016/j.rinp.2020.103345
  • He, J. H., Qie, N., & He, C. H. (2021). Solitary waves travelling along an unsmooth boundary. Results in Physics, 24, 104104. doi:10.1016/j.rinp.2021.104104
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England), 395(10223), 497–506. doi:10.1016/S0140-6736(20)30183-5
  • Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., … Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health–the latest 2019 Novel coronavirus outbreak in Wuhan. China. International Journal of Infectious Diseases, 91(2020), 264–266. doi:10.1016/j.ijid.2020.01.009
  • Ivorra, B., Ferrández, M. R., Vela-Pérez, M., & Ramos, A. M. (2020). Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Communications in Nonlinear Science & Numerical Simulation, 88, 105303. doi:10.1016/j.cnsns.2020.105303
  • Jarad, F., Abdeljawad, T., & Hammouch, Z. (2018). On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons & Fractals, 117, 16–20. doi:10.1016/j.chaos.2018.10.006
  • Jung, S. M., Akhmetzhanov, A. R., Katsuma, H., Linton, N. M., Yang, Y., Yuan, B., … Nishiura, H. (2020). Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: Inference using exported cases. Journal of Clinical Medicine, 9(2), 523. doi:10.3390/jcm9020523
  • Khan, H., Li, Y., Khan, A., & Khan, A. (2019). Existence of solution for a fractional-order Lotka-Volterra reaction-diffusion model with Mittag-Leffler kernel. Mathematical Methods in the Applied Sciences, 42(9), 3377–3387. doi:10.1002/mma.5590
  • Khan, T., Zaman, G., Foong, O. M., Fatima, B., Khan, I., & Nisar, K. S. (2020). Modeling and control of the Novel Coronavirus (COVID-19). Computer materials and Continua.
  • Kilbas, A. A., Marechiv, O. I., & Samko, S. G. (1993). Fractional integrals and derivatives, (Theory and applications). Minsk; Nauka I Tekhnika. Switzerland: Gordon and Breach.
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). Amsterdam; Boston: Elsevier.
  • Kumar, S., Ahmadian, A., Kumar, R., Kumar, D., Singh, J., Baleanu, D., & Salimi, M. (2020). An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics, 8(4), 558. doi:10.3390/math8040558
  • Kumar, S., Chauhan, R. P., Momani, S., & Hadid, S. (2020). Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numerical Methods for Partial Differential Equations. doi:10.1002/num.22707
  • Kumar, S., Kumar, R., Agarwal, R. P., & Samet, B. (2020). A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Mathematical Methods in the Applied Sciences, 43(8), 5564–5578. doi:10.1002/mma.6297
  • Kumar, S., Kumar, R., Cattani, C., & Samet, B. (2020). Chaotic behaviour of fractional predator-prey dynamical system. Chaos, Solitons & Fractals, 135, 109811. doi:10.1016/j.chaos.2020.109811
  • Kumar, S., Kumar, R., Momani, S., & Hadid, S. (2021). A study on fractional COVID-19 disease model by using Hermite wavelets. Mathematicsl Methods in the Applied Sciences. doi: 10.1002/mma.7065
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., … Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 382(13), 1199–1207. doi:10.1056/NEJMoa2001316
  • Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S. S., … He, D. (2020). A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 93, 211–216. doi:10.1016/j.ijid.2020.02.058
  • Ma, Z. S. (2020). A simple mathematical model for estimating the inflection points of COVID-19 outbreaks. medRxiv. doi:10.1101/2020.03.25.20043893
  • Maier, B. F., & Brockmann, D. (2020). Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science (New York, N.Y.), 368(6492), 742–746. doi:10.1126/science.abb4557
  • Martcheva, M. (2015). An introduction to mathematical epidemiology. New York: Springer.
  • Michael, S. (2020). Rosenwald, History’s deadliest pandemics, from ancient Rome to modern America. The Washington Post. Archived from the original on 7 April 2020.
  • Miller, S. K., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: Wiley.
  • National Centre for Disease Control. (2020a). Travel Advisory. Retrieved from https://ncdc.gov.in/WriteReadData/l892s/63950984511580999086.pdf
  • National Centre for Disease Control. (2020b). COVID-19 outbreak in China–travel advisory to travelers visiting China. Retrieved from https://ncdc.gov.in/WriteReadData/l892s/34827556791580715701.pdf
  • Omay, T., & Baleanu, D. (2021). Fractional unit-root tests allowing for a fractional frequency flexible Fourier form trend: Predictability of COVID-19. Advances in Difference Equations, 2021(1), 1–33. doi:10.1186/s13662-021-03317-9
  • Peter, O. J., Shaikh, A. S., Ibrahim, M. O., Nisar, K. S., Baleanu, D., Khan, I., & Abioye, A. I. (2021). Analysis and dynamics of fractional order mathematical model of COVID-19 in Nigeria using Atangana-Baleanu operator. Computers, Materials & Continua, 66(2), 1823–1848. doi:10.32604/cmc.2020.012314
  • Qu, H., Liu, X., Lu, X., Ur Rahman, M., & She, Z. (2022). Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order. Chaos, Solitons & Fractals, 156, 111856. doi:10.1016/j.chaos.2022.111856
  • Social Distancing, Quarantine, and Isolation-CDC (2020). Retrieved from www.cdc.gov
  • Sweilam, N. H., Al-Mekhlafi, S. M., & Baleanu, D. (2021). A hybrid stochastic fractional order Coronavirus (2019-nCov) mathematical model. Chaos, Solitons, and Fractals, 145, 110762. doi:10.1016/j.chaos.2021.110762
  • Toufik, M., & Atangana, A. (2017). New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models. The European Physical Journal plus, 132(10), 444. doi:10.1140/epjp/i2017-11717-0
  • Trilla, A. (2020). One world, one health: The novel coronavirus COVID-19 epidemic. Medicina Clinica (English ed.), 154(5), 175–177. doi:10.1016/j.medcle.2020.02.001
  • Veeresha, P., Prakasha, D. G., & Baskonus, H. M. (2019). New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives. Chaos (Woodbury, N.Y.), 29(1), 013119. doi:10.1063/1.5074099
  • Veeresha, P., Prakasha, D. G., & Kumar, S. (2020). A fractional model for propagation of classical optical solitons by using nonsingular derivative. Mathematics Methods in the Applied Sciences. doi:10.1002/mma.6335
  • Wang, K. L., Wang, K. J., & He, C. H. (2019). Physical insight of local fractional calculus and its application to fractional Kdv–Burgers–Kuramoto equation. Fractals, 27(07), 1950122. doi:10.1142/S0218348X19501226
  • Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y., & Gao, G. F. (2015). MERS, SARS, and Ebola: The role of super-spreaders in infectious disease. Cell Host & Microbe, 18(4), 398–401. doi:10.1016/j.chom.2015.09.013
  • World Health Organization. (2020a). Pneumonia of unknown cause–China. Retrieved from www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-China/en/
  • World Health Organization. (2020b). Updated WHO advice for international traffic in relation to the outbreak of the COVID-19. WHO, Geneva. Retrieved from https://www.who.int/ith/COVID-19adviceforinternationaltraffic/en/
  • Worldometer. (2020). COVID-19 coronavirus pandemic. Retrieved from https://www.worldometers.info/coronavirus
  • Wu, J. T., Leung, K., & Leung, G. M. (2020). Now casting and fore casting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet, 395(10225), 689–697.
  • Xu, C., Liao, M., Li, P., & Yuan, S. (2021). Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks. Chaos, Solitons & Fractals, 142, 110535. doi:10.1016/j.chaos.2020.110535
  • Zhang, L., Ur Rahman, M., Arfan, M., & Ali, A. (2021). Investigation of mathematical model of transmission co-infection TB in HIV community with a non-singular kernel. Results in Physics, 28, 104559. doi:10.1016/j.rinp.2021.104559