514
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Generalizing the eight levels theorem: a journey to Mersenne prime discoveries and new polynomial classes

ORCID Icon
Pages 32-52 | Received 12 Sep 2023, Accepted 18 Nov 2023, Published online: 20 Dec 2023

References

  • Cai, T. (2022). Perfect numbers and fibonacci sequences. World Scientific, Singapore, doi:10.1142/12477
  • Chebyshev, P. L. (1854). Theorie des mecanismes connus sous le nom de parall’elogrammes. Mémoires de l'Académie impériale des sciences de St. Pétersbourg, 7, 539–568.
  • Cody, W. J., Hillstrom, K. E., & Thacher, H. C. (1971). Chebyshev approximations for Riemann zeta function. Mathematics of Computation, 25(115), 537–547. doi:10.1090/S0025-5718-1971-0295535-9
  • Deza, E. (2021). Mersenne numbers and Fermat numbers. Hackensack: World Scientific Publishing Co. Pte. Ltd.
  • Dickson, L. E. (2005). History of the theory of numbers, Vol. 2: Diophantine analysis. New York: AMS Chelsea Publishing.
  • Fine, B., Moldenhauer, A., Rosenberger, G., Schürenberg, A., & Wienke, L. (2023). Algebra and number theory: A selection of highlights. Berlin, Boston: De Gruyter. doi:10.1515/9783110790283,
  • Gallier, J. (2011). Discrete mathematics–Universitext. New York: Springer-Verlag.
  • Gawron, M., & Ulas, M. (2016). On primitive integer solutions of the Diophantine equation t2 = G(x,y,z) and related results. Journal of Number Theory, 159, 101–122. doi:10.1016/j.jnt.2015.07.012
  • GIMPS. (2016). Great internet mersenne prime search, project. http://www.mersenne.org/default.php
  • He, J.-H., Yang, Q., He, C.-H., & Alsolami, A. (2023). Unlocking the plants’ distribution in a fractal space. Fractals, 31(09), 23501025. doi:10.1142/S0218348X23501025
  • Hou, X., Mullen, G. L., Sellers, J. A., & Yucas, J. L. (2009). Reversed Dickson polynomials over finite fields. Finite Fields and Their Applications., 15(6), 748–773. doi:10.1016/j.ffa.2009.06.004
  • Ibrahim, M. (2023). On the eight levels theorem and applications towards Lucas-Lehmer primality test for Mersenne primes, I. Arab Journal of Basic and Applied Sciences, 30(1), 267–284. doi:10.1080/25765299.2023.2204672
  • Ishii, M. (2008). Periodicity of Chebyshev polynomials over the residue ring of Z/2rZ and an electronic signature. Transaction of the Japan Society for Industrial and Applied Mathematics, 18(2), 257–265.
  • Iwasaki, A., & Umeno, K. (2014). Periodical property of Chebyshev polynomials on the residue class rings modulo 2w. IEICE Technical Report, CAS2014-67k, NLP2014-61.
  • Kraft, J. S., & Washington, L. C. (2018). An introduction to number theory with cryptography (2nd ed.). Washington: Chapman and Hall/CRC.
  • Kundu, S., & Mazumder, S. (2022). Number theory and its applications. Boca Raton: CRC Press.
  • Levine, J., & Brawley, J. V. (1977). Some cryptographic applications of permutation polynomials. Crvptologia, 1, 76–92.
  • Liao, X., Chen, F., & Wong, K. (2010). On the security of public-key algorithms based on Chebyshev polynomials over the finite field ZN. IEEE Transaction on Computers, 59(10), 1392–1401.
  • Lidl, R., Mullen, G. L., & Turnwald, G. (1993). Dickson polynomials. Pitman Monographs in Pure and Applied Mathematics, Vol. 65, Chapman and Hall/CRC: Addison-Wesley.
  • Loconsole, M., & Regolin, L. (2022). Are prime numbers special? Insights from the life sciences. Biology Direct, 17(1), 11. doi:10.1186/s13062-022-00326-w
  • Mason, J. C., & Handscomb, D. C. (2002). Chebyshev polynomials. Boca Raton: Chanpman-Hall.
  • Mesnager, S. (2011). Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson Polynomials. IEEE Transactions on Information Theory, 57(9), 5996–6009. doi:10.1109/TIT.2011.2124439
  • Mostafa, M. I. (2004). A new approach to polynomial identities. The Ramanujan Journal, 8(4), 423–457. doi:10.1007/s11139-005-0272-3
  • Ochem, P., & Rao, M. (2012). Odd perfect numbers are greater than 101500. Mathematics of Computation, 81(279), 1869–1877. doi:10.1090/S0025-5718-2012-02563-4
  • Piessens, R., & Branders, M. (1972). Chebyshev polynomial expansions of the Riemann zeta function. Mathematics of Computation, 26(120), G1–G5.
  • Sloane, N. J. A., et al. (2019). The on-line encyclopedia of integer sequences. https://oeis.org.