105
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Bio-guided isolation and bioinformatic studies of cytotoxic phytosterols from Acanthospermum hispidum DC against breast (MCF7) and colorectal (HT29) cancer cells

, , ORCID Icon, , , , , , & show all
Pages 358-370 | Received 15 Nov 2023, Accepted 15 Jun 2024, Published online: 28 Jun 2024

References

  • Abdalla, A. N., Abdallah, M. E., Aslam, A., Bader, A., Vassallo, A., Tommasi, N. D., … El-Azab, A. S. (2020). Synergistic anti leukemia effect of a novel Hsp90 and a pan cyclin dependent kinase inhibitors. Molecules (Basel, Switzerland), 25(9), 2220. doi:10.3390/molecules25092220
  • Abdalla, A. N., Malki, W. H., Qattan, A., Shahid, I., Hossain, M. A., & Ahmed, M. (2021). Chemosensitization of HT29 and HT29-5FU cell lines by a combination of a multi-tyrosine kinase inhibitor and 5FU downregulates ABCC1 and inhibits PIK3CA in light of their importance in saudi colorectal cancer. Molecules (Basel, Switzerland), 26(2), 334. doi:10.3390/molecules26020334
  • Abdalla, A. N., Qattan, A., Malki, W. H., Shahid, I., Hossain, M. A., & Ahmed, M. (2020). Significance of targeting VEGFR-2 and cyclin D1 in luminal-A breast cancer. Molecules (Basel, Switzerland), 25(20), 4606. doi:10.3390/molecules25204606
  • Adepiti, A., Adewunmi, C. O., & Agbedahunsi, J. (2014). Antitrichomonal activity of Acanthospermum hispidum D. C. (Asteraceae). African Journal of Biotechnology, 13(11), 1303–1307. doi:10.5897/AJB2013.13064
  • Adukpo, S., Elewosi, D., Asmah, R., Nyarko, A., Ekpe, P., Adotei, D., & Ofori, M. (2020). Antiplasmodial and genotoxic study of selected Ghanaian medicinal plants. Evidence-Based Complementary and Alternative Medicine: ECAM, 2020, 1582724–1582710. doi:10.1155/2020/1582724
  • Agamah, F. E., Mazandu, G. K., Hassan, R., Bope, C. D., Thomford, N. E., Ghansah, A., & ChIMusa, E. R. (2019). Computational/in silico methods in drug target and lead prediction. Briefings in Bioinformatics, 21(5), 1663–1675. %J Briefings in Bioinformatics doi:10.1093/bib/bbz103
  • Anwar, M. M., Shalaby, M., Embaby, A. M., Saeed, H., Agwa, M. M., & Hussein, A. (2020). Prodigiosin/PU‑H71 as a novel potential combined therapy for triple negative breast cancer (TNBC): Preclinical insights. Scientific Reports, 10(1), 14706. doi:10.1038/s41598-020-71157-w
  • Araújo, E., Randau, K., Filho, J., Pimentel, R., & Xavier, H. (2008). Acanthospermum hispidum DC (Asteraceae): Perspectives for a phytotherapeutic product. Revista Brasileira de Farmacognosia, 18, 777–784. doi:10.1590/S0102-695X2008000500024
  • Arena, M. E., Cartagena, E., Gobbato, N., Baigori, M., Valdez, J. C., & Bardon, A. (2011). In vivo and in vitro antibacterial activity of acanthospermal B, a sesquiterpene lactone isolated from Acanthospermum hispidum. Phytotherapy Research: PTR, 25(4), 597–602. doi:10.1002/ptr.3300
  • Awad, A. B., Chinnam, M., Fink, C. S., & Bradford, P. G. (2007). Beta-sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(11), 747–754. doi:10.1016/j.phymed.2007.01.003
  • Awad, A. B., & Fink, C. S. (2000). Phytosterols as anticancer dietary components: Evidence and mechanism of action. The Journal of Nutrition, 130(9), 2127–2130. doi:10.1093/jn/130.9.2127
  • Awad, A. B., von Holtz, R. L., Cone, J. P., Fink, C. S., & Chen, Y. C. (1998). Beta-sitosterol inhibits growth of HT-29 human colon cancer cells by activating the sphingomyelin cycle. Anticancer Research, 18(1a), 471–473.
  • Azeez, T., & Banigo, A. (2018). Phytochemical analysis of aqueous methanolic extract of Acanthospermum hispidium and its effect on biochemical and hematological indices in Plasmodium falciparum infected rats. African Journal of Biomedical Research, 21, 183–192.
  • Bao, X., Zhang, Y., Zhang, H., & Xia, L. (2022). Molecular mechanism of β-sitosterol and its derivatives in tumor progression. Frontiers in Oncology, 12, 926975. doi:10.3389/fonc.2022.926975
  • Baskar, A. A., Ignacimuthu, S., Paulraj, G. M., & Al Numair, K. S. (2010). Chemopreventive potential of beta-sitosterol in experimental colon cancer model – an in vitro and in vivo study. BMC Complementary and Alternative Medicine, 10(1), 24. doi:10.1186/1472-6882-10-24
  • Berdis, A. J. (2017). Inhibiting DNA polymerases as a therapeutic intervention against cancer. Frontiers in Molecular Biosciences, 4, 78. doi:10.3389/fmolb.2017.00078
  • Bilotta, M. T., Petillo, S., Santoni, A., & Cippitelli, M. (2020). Liver X receptors: Regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Frontiers in Immunology, 11, 584303. doi:10.3389/fimmu.2020.584303
  • Cai, C., Zhang, Y., & Peng, X. (2021). Knocking down sterol regulatory element binding protein 2 (SREBF2) inhibits the serine protease 8 (PRSS8)/sodium channel epithelial 1alpha subunit (SCNN1A) axis to reduce the cell proliferation, migration and epithelial-mesenchymal transformation of ovarian cancer. Bioengineered, 12(2), 9390–9400. doi:10.1080/21655979.2021.1978615
  • Cartagena, E., Bardón, A., Catalán, C. A., de Hernández, Z. N., Hernández, L. R., & Joseph-Nathan, P. (2000). Germacranolides and a new type of guaianolide from Acanthospermum hispidum. Journal of Natural Products, 63(10), 1323–1328. doi:10.1021/np9905057
  • Cassileth, B. R., & Deng, G. (2004). Complementary and alternative therapies for cancer. The Oncologist, 9(1), 80–89. doi:10.1634/theoncologist.9-1-80
  • Celikler Ozer, O., Orhan, I. E., Çalışkan, B., Senol Deniz, F. S., Gokbulut, A., Gur Maz, T., … Banoglu, E. (2021). Exploration of anti-tyrosinase effect of Geranium glaberrimum Boiss. & Heldr. with in silico approach and survey of 21 Geranium species. Journal of Herbal Medicine, 27, 100431. doi:10.1016/j.hermed.2021.100431
  • Chakraborty, A. K., Gaikwad, A., & Singh, K. (2012). Phytopharmacological review on Acanthospermum hispidum. Journal of Applied Pharmaceutical Science, 2(1), 144–148.
  • Chandrasekar, R., Sivagami, B., & Babu, M. N. (2018). A pharmacoeconomic focus on medicinal plants with anticancer activity. Research Journal of Pharmacognosy and Phytochemistry, 10(1), 91. doi:10.5958/0975-4385.2018.00015.8
  • Chen, P., Li, B., & Ou-Yang, L. (2022). Role of estrogen receptors in health and disease. Frontiers in Endocrinology, 13, 839005. doi:10.3389/fendo.2022.839005
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. doi:10.1038/srep42717
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. doi:10.1093/nar/gkz382
  • Deepa, N., & Rajendran, N. N. (2007). Anti-tumor activity of Acanthospermum hispidum DC on dalton ascites lymphoma in mice. Natural Product Sciences, 13, 234–240.
  • Edewor, T., & Olajire, A. (2011). Two flavones from Acanthospermum hispidum DC and their antibacterial activity. Journal of Organic Chemistry, 01, 132–141. doi:10.4236/ijoc.2011.13020
  • Enmark, E., Pelto-Huikko, M., Grandien, K., Lagercrantz, S., Lagercrantz, J., Fried, G., … Gustafsson, J. A. (1997). Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. The Journal of Clinical Endocrinology and Metabolism, 82(12), 4258–4265. doi:10.1210/jcem.82.12.4470
  • Erwin, Pusparohmana, W. R., Safitry, R. D., Marliana, E., Usman, & Kusuma, I. W. (2020). Isolation and characterization of stigmasterol and β-sitosterol from wood bark extract of Baccaurea macrocarpa Miq. Mull. Arg. Rasayan Journal of Chemistry. 13(04), 2552–2558. doi:10.31788/RJC.2020.1345652
  • Filimonov, D. A., Poroĭkov, V. V., Karaicheva, E. I., Kazarian, R. K., Budunova, A. P., Mikhaĭlovskiĭ, E. M., … Burov, I. V. (1995). The computerized prediction of the spectrum of biological activity of chemical compounds by their structural formula: The PASS system. Prediction of activity spectra for substance. Eksperimental’naia i Klinicheskaia Farmakologiia, 58(2), 56–62.
  • Fuentes, N., & Silveyra, P. (2019). Estrogen receptor signaling mechanisms. Advances in protein chemistry and structural biology, 116, 135–170. doi:10.1016/bs.apcsb.2019.01.001
  • Gad, E., Nafie, M., Eltamany, E., Hammad, M., Barakat, A., & Boraei, A. (2020). Discovery of new apoptosis-inducing agents for breast cancer based on ethyl 2-amino-4,5,6,7-tetra hydrobenzo[b]thiophene-3-carboxylate: Synthesis, in vitro, and in vivo activity evaluation. Molecules (Basel, Switzerland), 25(11), 2523. doi:10.3390/molecules25112523
  • Gezici, S., & Şekeroğlu, N. (2019). Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anti-Cancer Agents in Medicinal Chemistry, 19(1), 101–111. doi:10.2174/1871520619666181224121004
  • Karar, M. G. E., & Kuhnert, N. (2017). Herbal drugs from Sudan: Traditional uses and phytoconstituents. Pharmacognosy Reviews, 11(22), 83–103. doi:10.4103/phrev.phrev_15_15
  • Koukouikila-Koussounda, F., Abena, A. A., Nzoungani, A., Mombouli, J. V., Ouamba, J. M., Kun, J., & Ntoumi, F. (2013). In vitro evaluation of antiplasmodial activity of extracts of Acanthospermum hispidum DC (Asteraceae) and Ficus thonningii Blume (Moraceae), two plants used in traditional medicine in the Republic of Congo. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 10(2), 270–276.
  • Lu, J. J., Bao, J. L., Chen, X. P., Huang, M., & Wang, Y. T. (2012). Alkaloids isolated from natural herbs as the anticancer agents. Evidence-Based Complementary and Alternative Medicine: ECAM, 2012, 485042–485012. doi:10.1155/2012/485042
  • Michmerhuizen, A. R., Spratt, D. E., Pierce, L. J., & Speers, C. W. (2020). Are we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer, 6(1), 47. doi:10.1038/s41523-020-00190-9
  • N'Do, J. Y., Hilou, A., Ouedraogo, N., Sombie, E. N., & Traore, T. K. (2018). Phytochemistry, antioxidant, and hepatoprotective potential of Acanthospermum hispidum DC extracts against diethylnitrosamine-induced hepatotoxicity in rats. Medicines (Basel, Switzerland), 5(2), 42. doi:10.3390/medicines5020042
  • Ogbole, O. O., Segun, P. A., & Adeniji, A. J. (2017). In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complementary and Alternative Medicine, 17(1), 494. doi:10.1186/s12906-017-2005-8
  • Oh, T. G., Wang, S.-C. M., Acharya, B. R., Goode, J. M., Graham, J. D., Clarke, C. L., … Muscat, G. E. O. (2016). The nuclear receptor, RORγ, regulates pathways necessary for breast cancer metastasis. EBioMedicine, 6, 59–72. doi:10.1016/j.ebiom.2016.02.028
  • Olawumi, O., Oladosu, I., & Christianah, F. (2014). Tetrahydroanthracene derivative: Anti-microbial isolate from Acanthospermum hispidum DC. International Journal of Advanced Chemistry, 2(2), 182–184. doi:10.14419/ijac.v2i2.3519
  • Pierre, L. L., & Moses, M. N. (2015). Isolation and characterisation of stigmasterol and B-sitosterol from Odontonema Strictum (Acanthaceae). JIPBS, 2(1), 88–96.
  • Poli, A., Marangoni, F., Corsini, A., Manzato, E., Marrocco, W., Martini, Da. n. iela., … Visioli, F. (2021). Phytosterols, cholesterol control, and cardiovascular disease. Nutrients, 13(8), 2810. doi:10.3390/nu13082810
  • Pontini, L., & Marinozzi, M. (2021). Shedding light on the roles of liver X receptors in cancer by using chemical probes. British Journal of Pharmacology, 178(16), 3261–3276. doi:10.1111/bph.15200
  • Santos, E., Machado, J., Ferreira, M., & Soares, L. (2022). Acanthospermum hispidum DC: An updated review on phytochemistry and biological activities. Mini Reviews in Medicinal Chemistry, 22(5), 684–700. doi:10.2174/1389557521666210913115651
  • Schattner, E., & Friedman, S. M. (1996). Fas expression and apoptosis in human B cells. Immunologic Research, 15(3), 246–257. doi:10.1007/BF02918252
  • Shwe, H. H., Thein, W. W., Win, S. S., Pe, N. N., & Win, T. (2019). Structural characterization of stigmasterol and β-sitosterol from the roots of Premna herbacea Roxb. IEEE-SEM, 7(8), 195–201.
  • Soleimanian, Y., Goli, S. A. H., Varshosaz, J., Di Cesare Mannelli, L., Ghelardini, C., Cirri, M., & Maestrelli, F. (2020). β-sitosterol loaded nanostructured lipid carrier: Physical and oxidative stability, in vitro simulated digestion and hypocholesterolemic activity. Pharmaceutics, 12(4), 386. doi:10.3390/pharmaceutics12040386
  • Sultana, S., Chishti, A., Muhammad, S., Ali Shah, D. S., Akram, M., & Nisar, J. (2019). Complementary and alternative approach to heal cancer: A review. Pakistan Journal of Biological Science. 2, 32–41.
  • Turdo, A., D'Accardo, C., Glaviano, A., Porcelli, G., Colarossi, C., COLarossi, L., … Stassi, G. (2021). Targeting phosphatases and kinases: How to checkmate cancer. Frontiers in Cell and Developmental Biology, 9, 690306. doi:10.3389/fcell.2021.690306
  • Yarmolinsky, J., Bull, C. J., Vincent, E. E., Robinson, J., Walther, A., Smith, G. D., … Martin, R. M. (2020). Association between genetically proxied inhibition of HMG-CoA reductase and epithelial ovarian cancer. JAMA, 323(7), 646–655. doi:10.1001/jama.2020.0150
  • Zhang, M., Wu, S., Wang, L., Xia, Z., Kuang, K., Xu, Q., … Zhou, N. (2022). Visible-light-induced cascade cyclization of N-propargyl aromatic amines and acyl oxime esters: Rapid access to 3-acylated quinolines. The Journal of Organic Chemistry, 87(15), 10277–10284. doi:10.1021/acs.joc.2c01277
  • Zhang, R., Zeng, J., Liu, W., Meng, J., Wang, C., Shi, L., … Xing, D. (2022). The role of NPC1L1 in cancer. Frontiers in Pharmacology, 13, 956619. doi:10.3389/fphar.2022.956619
  • Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., … Qin, S. (2021). Cytochrome P450 enzymes and drug metabolism in humans. International Journal of Molecular Sciences, 22(23), 12808. doi:10.3390/ijms222312808