1,574
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effects of grain size and temperature on mechanical properties of Fe–20Mn–0.7C TWIP steel

, , , , , & show all
Pages 16-21 | Received 10 Jul 2020, Accepted 04 Sep 2020, Published online: 17 Sep 2020

References

  • Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast. 2000;16:1391–1409. doi: 10.1016/S0749-6419(00)00015-2
  • Zhuang CL, Liu JH, Li CR, et al. Study on high temperature solidification behavior and crack sensitivity of Fe-Mn-C-Al TWIP steel. Sci Rep. 2019;9:15962–15970. doi: 10.1038/s41598-019-52381-5
  • Wang YH, Kang JM, Peng Y, et al. Laminated Fe-34.5Mn-0.04C composite with high strength and ductility. Mater Sci Technol. 2018;34:1939–1943. doi: 10.1016/j.jmst.2018.05.013
  • Wang Y H, Kang J M, Peng Y, et al. Hall-Petch strengthening in Fe-34.5Mn-0.04C steel cold-rolled, partially recrystallized and fully recrystallized. Scrip Mater. 2018;155:41–45. doi: 10.1016/j.scriptamat.2018.06.019
  • Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scrip Meter. 2018;8:484–487.
  • Bouaziz O, Guelton N. Modeling of TWIP effect on work-harding. Mater Sci Eng A. 2001;319:246–249. doi: 10.1016/S0921-5093(00)02019-0
  • Allain S, Chateau J-P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A. 2004;387:158–162. doi: 10.1016/j.msea.2004.01.059
  • Sato K, Ichinose M, Hirotsu Y, et al. Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys. ISIJ Int. 1989;29:868–877. doi: 10.2355/isijinternational.29.868
  • Curtze S, Kuokkala V-T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58:5129–5141. doi: 10.1016/j.actamat.2010.05.049
  • Koyama M, Lee T, Chong SL, et al. Grain refinement effect on cryogenic tensile ductility in a Fe-Mn-C twinning-induced plasticity steel. Mater Des. 2013;49:234–241. doi: 10.1016/j.matdes.2013.01.061
  • Wang YH, Shi BD, He YM, et al. A fine grain, high Mn steel with excellent cryogenic temperature properties and corresponding constitutive behaviour. Materials. 2018;11:253–262. doi: 10.3390/ma11020253
  • Scott C, Allain M, Faral M, et al. The development of a new Fe-Mn-C austenitic steel automotive applications. Metall Res Technol. 2006;106:293–302.
  • Tian YZ, Bai Y, Chen MC, et al. Enhanced strength and ductility in an ultrafine-grained Fe-22Mn-0.6C austenitic steel having fully recrystallized structure. Metall Mater Trans A. 2014;45:5300–5304. doi: 10.1007/s11661-014-2552-2
  • Lee Y-K. Relationship between austenite dislocation density introduced during thermal cycling and M s temperature in an Fe-17 wt pct Mn alloy. Metall Mater Trans A. 2002;33:1913–1917. doi: 10.1007/s11661-002-0024-6
  • Ferreira PJ, Mullner P. A thermodynamic model for the stacking-fault energy. Acta Mater. 1998;46:4479–4484. doi: 10.1016/S1359-6454(98)00155-4
  • Pierce DT, Jimeaez JA, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation. Acta Metall. 2015;100:178–190.
  • Ishida K. Direct estimation of stacking fault energy by thermodynamic analysis. Phys Status Solidi A. 1976;36:717–728. doi: 10.1002/pssa.2210360233
  • Li K, Hsu TY. Gibbs free energy evaluation of the fcc (γ) and hcp (ε) phases in Fe-Mn-Si alloys. Calphad. 1997;21:443–448. doi: 10.1016/S0364-5916(97)00044-8
  • Yang WS, Wan CM. The influence of aluminum content to the stacking fault energy in Fe-Mn-Al-C alloy system. J Mater Sci. 1990;25:1821–1823. doi: 10.1007/BF01045392
  • Huang WM. An assessment of the Fe-Mn system. Calphad. 1989;13:243–252. doi: 10.1016/0364-5916(89)90004-7
  • Takaki S, Furnya T, Tokunaga Y. Effect of Si and Al additions on the low temperature toughness and fracture mode of Fe-27Mn alloys. ISIJ Int. 1990;30:632–638. doi: 10.2355/isijinternational.30.632
  • El-Danaf E, Kalidindi SR, Doherty RD. Influence of grain size and stacking-fault energy on deformation twinning in Fcc metals. Metall Mater Trans A. 1999;20:1223–1233. doi: 10.1007/s11661-999-0272-9
  • Ayraktar E, Khalid FA, Levaillant C. Deformation and fracture behaviour of high manganese austenitic steel. J Mater Process Technol. 2003;147:345–354.
  • Dastur YN, Leslie WC. Mechanism of work hardening in Hadfield manganese steel. Metall Mater Trans A. 1981;12:749–759. doi: 10.1007/BF02648339
  • Miguel M-C, Vespignani A, Zapperi S, et al. Intermittent dislocation flow in viscoplastic deformation. Nature. 2001;410:667–671. doi: 10.1038/35070524
  • Wang XJ, Sun XJ, Song C, et al. Grain size-dependent mechanical properties of a high-manganese austenitic steel. Acta Metall Sin (Engl Lett). 2019;32:746–754. doi: 10.1007/s40195-018-0828-z