1,767
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

CMAS hot corrosion behavior of rare-earth silicates for environmental barrier coatings applications: a comprehensive review

, , , , , & show all
Pages 9-28 | Received 24 Oct 2021, Accepted 10 Dec 2021, Published online: 24 Jan 2022

References

  • Yu Z, Zhao H, Wadley HNG. The vapor deposition and oxidation of platinum- and yttria-stabilized zirconia multilayers. J Am Ceram Soc. 2011;94(8):2671–2679.
  • Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012 Oct;37(10):891–902.
  • Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002 Apr 12;296(5566):280–284.
  • Ohnabe H, Masaki S, Onozuka M, et al. Potential application of ceramic matrix composites to aero-engine components. Compos Part A Appl S. 1999;30(4):489–496.
  • Parthasarathy TA., Cox B, Sudre O, Przybyla C, Cinibulk MK. Modeling environmentally induced property degradation of SiC/BN/SiC ceramic matrix composites. J Am Ceram Soc. 2017;101:973–997.
  • Jacobson NS. Corrosion of silicon-based ceramics in combustion environments. J Am Ceram Soc. 1993 Jan;76(1):3–28.
  • Poerschke DL, Jackson RW, Levi CG. Silicate deposit degradation of engineered coatings in Gas turbines: progress Toward models and materials solutions. Annu Rev Mater Res. 2017;47:297–330.
  • Levi CG, Hutchinson JW, Vidal-Setif MH, et al. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 2012 Oct;37(10):932–941.
  • Costa G, Harder BJ, Wiesner VL, et al. Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents. J Am Ceram Soc. 2019 May;102(5):2948–2964.
  • Günthner M, Schütz A, Glatzel U, et al. High performance environmental barrier coatings, Part I: passive filler loaded SiCN system for steel. J Eur Ceram Soc. 2011;31(15):3003–3010.
  • Liu J, Zhang L, Liu Q, et al. Polymer-Derived SiOC-barium-strontium aluminosilicate coatings as an environmental barrier for C/SiC composites. J Am Ceram Soc. 2010;93(12):4148–4152.
  • Lee KN. Special issue: environmental barrier coatings. Coatings. 2020 Jun;10(6):512.
  • Lee KN. Current status of environmental barrier coatings for Si-based ceramics. Surf Coat Tech. 2000 Nov;133:1–7.
  • Turcer LR, Padture NP. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics. Scr Mater. 2018;154:111–117.
  • Lee KN, Jacobson NS, Miller RA. Refractory oxide coatings on Sic ceramics. MRS Bull. 1994 Oct;19(10):35–38.
  • Lee KN. Key durability issues with mullite-based environmental barrier coatings for Si-based ceramics. J Eng Gas Turb Power. 2000 Oct;122(4):632–636.
  • Lee KN, Miller RA. Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics. Surf Coat Technol. 1996 Dec 1;86(1-3):142–148.
  • Mesquita-Guimaraes J, Garcia E, Miranzo P, et al. Mullite-YSZ multilayered environmental barrier coatings tested in cycling conditions under water vapor atmosphere. Surf Coat Technol. 2012 Sep 25;209:103–109.
  • Lee KN, Fox DS, Eldridge JI, et al. Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J Am Ceram Soc. 2003 Aug;86(8):1299–1306.
  • Liu D, Kyaw ST, Flewitt PEJ, et al. Residual stresses in environmental and thermal barrier coatings on curved superalloy substrates: Experimental measurements and modelling. Mat Sci Eng A-Struct. 2014 Jun 12;606:117–126.
  • Cojocaru CV, Levesque D, Moreau C, et al. Performance of thermally sprayed Si/mullite/BSAS environmental barrier coatings exposed to thermal cycling in water vapor environment. Surf Coat Technol. 2013 Feb 15;216:215–223.
  • Richards BT, Zhao H, Wadley HNG. Structure, composition, and defect control during plasma spray deposition of ytterbium silicate coatings. J Mater Sci. 2015;50(24):7939–7957.
  • Xu Y, Hu X, Xu F, et al. Rare earth silicate environmental barrier coatings: present status and prospective. Ceram Int. 2017;43(8):5847–5855.
  • Xu Y, Li J. Preparation and molten salt corrosion research of composite environmental barrier coatings of Lu2Si2O7 and Lu2SiO5. Mater Res Innovations. 2014;18(sup4):S4-958–S4-962.
  • Zhou Y-C, Zhao C, Wang F, et al. Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β-Yb2Si2O7. J Am Ceram Soc. 2013;96(12):3891–3900.
  • Xu Y, Yan Z. Investigation on the preparation of Si/mullite/Yb2Si2O7 environmental barrier coatings onto silicon carbide. J Rare Earth. 2010;28(3):399–402.
  • Bondar IA. Rare-earth silicates. Ceram Int. 1982;8(3):83–89.
  • Tian Z, Zheng L, Wang J, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J Eur Ceram Soc. 2016;36(1):189–202.
  • Li Y, Wang J, Wang J. Theoretical investigation of phonon contributions to thermal expansion coefficients for rare earth monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu). J Eur Ceram Soc. 2020;40(7):2658–2666.
  • Li Y, Luo Y, Tian Z, et al. Theoretical exploration of the abnormal trend in lattice thermal conductivity for monosilicates RE2SiO5 (RE  =  Dy, Ho, Er, Tm, Yb and Lu). J Eur Ceram Soc. 2018;38(10):3539–3546.
  • Sun Z, Li M, Zhou Y. Recent progress on synthesis, multi-scale structure, and properties of Y–Si–O oxides. Int Mater Rev. 2014;59(7):357–383.
  • Fujii S, Ioki A, Yokoi T, et al. Role of phonons on phase stabilization of RE2Si2O7 over wide temperature range (RE = Yb, Gd). J Eur Ceram Soc. 2020;40(3):780–788.
  • Tian Z, Zheng L, Li Z, et al. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. J Eur Ceram Soc. 2016;36(11):2813–2823.
  • Luo Y, Wang J, Li J, et al. Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7. J Mater Res. 2015;30(4):493–502.
  • Fernandez-Carrion AJ, Allix M, Becerro AI. Thermal expansion of rare-earth pyrosilicates. J Am Ceram Soc. 2013 Jul;96(7):2298–2305.
  • Wu R, Pan W, Ren X, et al. An extremely low thermal conduction ceramic: RE9.33(SiO4)6O2 silicate oxyapatite. Acta Mater. 2012;60(15):5536–5544.
  • Tian C, Liu J, Cai J, et al. Direct synthesis of La9.33Si6O26 ultrafine powder via sol–gel self-combustion method. J Alloys Compd. 2008;458(1-2):378–382.
  • Tian Z, Zhang J, Zhang T, et al. Towards thermal barrier coating application for rare earth silicates RE2SiO5 (RE = La, Nd, Sm, Eu, and Gd). J Eur Ceram Soc. 2019;39(4):1463–1476.
  • Rodríguez-García MM, Ciric A, Ristic Z, et al. Narrow-band red phosphors of high colour purity based on Eu3+-activated apatite-type Gd9.33(SiO4)6O2. J Mater Chem C. 2021;9(23):7474–7484.
  • Qu Z, Sparks TD, Pan W, et al. Thermal conductivity of the gadolinium calcium silicate apatites: effect of different point defect types. Acta Mater. 2011 Jun;59(10):3841–3850.
  • Masubuchi Y, Higuchi M, Kodaira K. Reinvestigation of phase relations around the oxyapatite phase in the Nd2O3-SiO2 system. J Cryst Growth. 2003 Jan;247(1-2):207–212.
  • Lofaj F, Satet R, Hoffmann MJ, et al. Thermal expansion and glass transition temperature of the rare-earth doped oxynitride glasses. J Eur Ceram Soc. 2004;24(12):3377–3385.
  • Becher PF, Waters SB, Westmoreland CG, et al. Compositional Effects on the properties of Si-Al-RE-based oxynitride glasses (RE = La, Nd, Gd, Y, or Lu). J Am Ceram Soc. 2004;85(4):897–902.
  • Garcia E, Sotelo-Mazon O, Poblano-Salas CA, et al. Characterization of Yb2Si2O7-Yb2SiO5 composite environmental barrier coatings resultant from in situ plasma spray processing. Ceram Int. 2020 Sep;46(13):21328–21335.
  • Lange A, Braun R, Mechnich P, et al. Y2sio5 environmental barrier coatings for niobium silicide based materials. Mater High Temp. 2015 Jan;32(1-2):74–80.
  • Maier N, Rixecker G, Nickel KG. Formation and stability of Gd, Y, Yb and Lu disilicates and their solid solutions. J Solid State Chem. 2006 Jun;179(6):1630–1635.
  • Wiesner VL, Vempati UK, Bansal NP. High temperature viscosity of calcium-magnesium-aluminosilicate glass from synthetic sand. Scr Mater. 2016;124:189–192.
  • Jia R, Deng L, Yun F, et al. Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics. Mater Chem Phys. 2019 May 15;233:155–162.
  • Webster RI, Opila EJ. The effect of TiO2 additions on CaO–MgO–Al2O3–SiO2 (CMAS) crystallization behavior from the melt. J Am Ceram Soc. 2018;102(6):3354–3367.
  • Song W, Lavallee Y, Wadsworth FB, et al. Wetting and spreading of molten volcanic Ash in Jet engines. J Phys Chem Lett. 2017 Apr 20;8(8):1878–1884.
  • Song J, Yang S, Fukumoto M, et al. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines. Acta Mater. 2019 Jun 1;171:119–131.
  • Li B, Chen Z, Zheng H, et al. Wetting mechanism of CMAS melt on YSZ surface at high temperature: First-principles calculation. Appl Surf Sci. 2019 Jul 31;483:811–818.
  • Song W, Lavallee Y, Hess KU, et al. Volcanic ash melting under conditions relevant to ash turbine interactions. Nat Commun. 2016 Mar 2;7:10795.
  • Stokes JL, Harder BJ, Wiesner VL, et al. High-Temperature thermochemical interactions of molten silicates with Yb2Si2O7 and Y2Si2O7 environmental barrier coating materials. J Eur Ceram Soc. 2019 Dec;39(15):5059–5067.
  • Stokes JL, Harder BJ, Wiesner VL, et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials. J Am Ceram Soc. 2019;103(1):622–634.
  • Liu J, Zhang L, Liu Q, et al. Calcium-magnesium-aluminosilicate corrosion behaviors of rare-earth disilicates at 1400 °C. J Eur Ceram Soc. 2013 Dec;33(15-16):3419–3428.
  • Turcer LR, Krause AR, Garces HF, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7. J Eur Ceram Soc. 2018;38(11):3914–3924.
  • Turcer LR, Krause AR, Garces HF, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7. J Eur Ceram Soc. 2018;38(11):3905–3913.
  • Wiesner VL, Scales D, Johnson NS, et al. Calcium–magnesium aluminosilicate (CMAS) interactions with ytterbium silicate environmental barrier coating material at elevated temperatures. Ceram Int. 2020;46(10):16733–16742.
  • Wiesner VL, Harder BJ, Bansal NP. High-temperature interactions of desert sand CMAS glass with yttrium disilicate environmental barrier coating material. Ceram Int. 2018;44(18):22738–22743.
  • Poerschke DL, Shaw JH, Verma N, et al. Interaction of yttrium disilicate environmental barrier coatings with calcium-magnesium-iron alumino-silicate melts. Acta Mater. 2018;145:451–461.
  • Zhao H, Richards BT, Levi CG, et al. Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surf Coat Technol. 2016;288:151–162.
  • Grant KM, Kramer S, Seward GGE, et al. Calcium-Magnesium alumino-silicate interaction with Yttrium Monosilicate environmental barrier coatings. J Am Ceram Soc. 2010 Oct;93(10):3504–3511.
  • Ahlborg NL, Zhu D. Calcium–magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surf Coat Technol. 2013;237:79–87.
  • Jang B-K, Feng F-J, Suzuta K, et al. Corrosion behavior of volcanic ash and calcium magnesium aluminosilicate on Yb2SiO5 environmental barrier coatings. J Ceram Soc Jpn. 2017;125(4):326–332.
  • Poerschke DL, Barth TL, Fabrichnaya O, et al. Phase equilibria and crystal chemistry in the calcia-silica-yttria system. J Eur Ceram Soc. 2016 Jun;36(7):1743–1754.
  • Tian Z, Zhang J, Zheng L, et al. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium magnesium aluminosilicate at 1300 degrees C. Corros Sci. 2019 Mar;148:281–292.
  • Jiang FR, Cheng LF, Wang YG. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium- aluminosilicate attack. Ceram Int. 2017 Aug 15;43(12):9019–9023.
  • Kim SH, Kim BN, Nagashima N, et al. High-temperature corrosion of spark plasma sintered Gd2SiO5 with volcanic ash for environmental barrier coatings. J Eur Ceram Soc. 2021 May;41(5):3161–3166.
  • Poerschke DL, Hass DD, Eustis S, et al. Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC composites. J Am Ceram Soc. 2015;98(1):278–286.
  • Sleeper J, Garg A, Wiesner VL, et al. Thermochemical interactions between CMAS and Ca2Y8(SiO4)6O2 apatite environmental barrier coating material. J Eur Ceram Soc. 2019;39(16):5380–5390.
  • Zhang H, Lu J, Shan X, et al. A promising molten silicate resistant material: rare-earth oxy-apatite RE9.33(SiO4)6O2 (RE  =  Gd, Nd or La). J Eur Ceram Soc. 2020;40(12):4101–4110.
  • Costa G, Harder BJ, Bansal NP, et al. Thermochemistry of calcium rare-earth silicate oxyapatites. J Am Ceram Soc. 2019;103(2):1446–1453.
  • Goddio F, von Bomhard AS, Grataloup CC. Thonis-Heracleion: memory and reflections of the saite history. J Egypt Archaeol. 2020 Jun;106(1-2):171–186.
  • Jang B-K, Nagashima N, Kim S, et al. Mechanical properties and microstructure of Yb2SiO5 environmental barrier coatings under isothermal heat treatment. J Eur Ceram Soc. 2020;40(7):2667–2673.
  • Zhong X, Zhu T, Niu Y, et al. Effect of microstructure evolution and crystal structure on thermal properties for plasma-sprayed RE2SiO5 (RE  =  Gd, Y, Er) environmental barrier coatings. J Mater Sci Technol. 2021;85:141–151.
  • Hu X, Xu F, Li K, et al. Water vapor corrosion behavior and failure mechanism of plasma sprayed mullite/Lu2Si2O7-Lu2SiO5 coatings. Ceram Int. 2018;44(12):14177–14185.
  • Lv B, Qu Z, Xu B, et al. Water vapor volatilization and oxidation induced surface cracking of environmental barrier coating systems: A numerical approach. Ceram Int. 2021;47(12):16547–16554.
  • Chen D, Harmon R, Dwivedi G, et al. In-flight particle states and coating properties of air plasma sprayed ytterbium disilicates. Surf Coat Technol. 2021;417:127186.
  • Richards BT, Young KA, de Francqueville F, et al. Response of ytterbium disilicate–silicon environmental barrier coatings to thermal cycling in water vapor. Acta Mater. 2016;106:1–14.
  • Lu Y, Wang Y. Formation and growth of silica layer beneath environmental barrier coatings under water-vapor environment. J Alloys Compd. 2018;739:817–826.
  • Nieto A, Walock M, Ghoshal A, et al. Layered, composite, and doped thermal barrier coatings exposed to sand laden flows within a gas turbine engine: Microstructural evolution, mechanical properties, and CMAS deposition. Surf Coat Technol. 2018 Sep 15;349:1107–1116.
  • Harder BJ, Ramirez-Rico J, Almer JD, et al. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate. J Am Ceram Soc. 2011 Jun;94:S178–S185.
  • Summers WD, Poerschke DL, Begley MR, et al. A computational modeling framework for reaction and failure of environmental barrier coatings under silicate deposits. J Am Ceram Soc. 2020;103(9):5196.
  • Stolzenburg F, Kenesei P, Almer J, et al. The influence of calcium–magnesium–aluminosilicate deposits on internal stresses in Yb2Si2O7 multilayer environmental barrier coatings. Acta Mater. 2016;105:189–198.
  • Cai Z, Hong H, Peng D, et al. Stress evolution in ceramic top coat of air plasma-sprayed thermal barrier coatings due to CMAS penetration under thermal cycle loading. Surf Coat Technol. 2020;381:125146.
  • Turcer LR, Padture NP. Rare-earth pyrosilicate solid-solution environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass. J Mater Res. 2020;35(17):2373–2384.
  • Sun L, Luo Y, Tian Z, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium–magnesium–aluminosilicate (CMAS). Corros Sci. 2020;175:108881.
  • Tian Z, Ren X, Lei Y, et al. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. J Eur Ceram Soc. 2019;39(14):4245–4254.
  • Zhang X, Zhou K, Liu M, et al. CMAS corrosion and thermal cycle of Al-modified PS-PVD environmental barrier coating. Ceram Int. 2018;44(13):15959–15964.
  • Nieai AA, Mohammadi M, Shojaie-Bahaabad M. Hot corrosion behavior of calcium magnesium aluminosilicate (CMAS) on the Yb2SiO5-8YSZ composite as a candidate for environmental barrier coatings. Mater Chem Phys. 2020 Mar 1;243:122596.
  • Wolf M, Mack DE, Guillon O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium-aluminosilicate (CMAS): A comparative study. J Am Ceram Soc. 2020;103(12):7056–7071.
  • Darthout É, Quet A, Braidy N, et al. Lu2O3-SiO2-ZrO2 coatings for environmental barrier application by solution Precursor plasma spraying and influence of Precursor chemistry. J Therm Spray Technol. 2013;23(3):325–332.
  • Boakye EE, Mogilevsky P, Parthasarathy TA, et al. Processing and testing of RE2Si2O7 fiber-matrix interphases for SiC-SiC composites. J Am Ceram Soc. 2016 Feb;99(2):415–423.
  • Vu HD, Nanko M. Crack-Healing behavior and mechanical strength recovery of 5 vol% silicon carbide particle dispersed Yttrium Monosilicate composites. Mater Trans. 2019;60(1):149–155.
  • Feng F-J, Jang B-K, Park JY, et al. Effect of Yb2SiO5 addition on the physical and mechanical properties of sintered mullite ceramic as an environmental barrier coating material. Ceram Int. 2016;42(14):15203–15208.
  • Darthout É, Gitzhofer F. Structure stabilization by zirconia pinning effect of Y2Si2O7 environmental barrier coatings synthesized by solution precursor plasma spraying process. Surf Coat Technol. 2017;309:1081–1088.
  • Webster RI, Opila EJ. Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium-magnesium-alumino-silicate resistance. J Mater Res. 2020 Sep 14;35(17):2358–2372.
  • Nguyen ST, Nakayama T, Suematsu H, et al. Self-healing behavior and strength recovery of ytterbium disilicate ceramic reinforced with silicon carbide nanofillers. J Eur Ceram Soc. 2019;39(10):3139–3152.
  • Nguyen ST, Nakayama T, Suematsu H, et al. Strength improvement and purification of Yb2Si2O7-SiC nanocomposites by surface oxidation treatment. J Am Ceram Soc. 2017 Jul;100(7):3122–3131.
  • Steinberg L, Naraparaju R, Heckert M, et al. Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry. J Eur Ceram Soc. 2018 Dec;38(15):5101–5112.
  • Liu SH, Ji G, Li CJ, et al. Novel long laminar plasma sprayed hybrid structure thermal barrier coatings for high-temperature anti-sintering and volcanic ash corrosion resistance. J Mater Sci Technol. 2021 Jul 20;79:141–146.
  • Shan X, Chen WF, Yang LX, et al. Pore filling behavior of air plasma spray thermal barrier coatings under CMAS attack. Corros Sci. 2020 May 1;167:108478.