622
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of FS-SMAT on microstructure and mechanical property of pure magnesium and AZ31 magnesium alloy

, , , , &
Article: 2171768 | Received 19 Nov 2022, Accepted 17 Jan 2023, Published online: 07 Feb 2023

References

  • Song JF, She J, Chen DL, et al. Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloy. 2020;8:1–41.
  • Friedrich HE, Mordike BL. Magnesium technology: metallurgy, design data, applications. Berlin: Springer-Verlag; 2006.
  • Yang Y, Xiong XM, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020. J Magnes Alloy. 2021;9:705–747.
  • Brown RE. Mechanical engineers’ handbook: materials and mechanical design. Magnesium and its alloys. New Jersey: Wiley; 1960.
  • Kelly EW, Hosford WD. Plane-strain compression of magnesium and magnesium alloy crystals. Trans Metall Soc AIME. 1968;242:5–13.
  • Liu BY, Zhang Z, Liu F, et al. Rejuvenation of plasticity via deformation graining in magnesium. Nat Commun. 2022;13:1060.
  • Wonsiewicz BC, Backofen WA. Plasticity of magnesium crystals. Trans TMS-AIME. 1967;239:1422–1431.
  • Chen LY, Liang SX, Liu Y, et al. Additive manufacturing of metallic lattice structures: unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater Sci Eng R Rep. 2021;146:100648.
  • Kim WJ, Hong SI, Kim YS, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 2003;51:3293–3307.
  • Wu JL, Jin L, Dong J, et al. The texture and its optimization in magnesium alloy. J Mater Sci Technol. 2020;42:175–189.
  • Peng JH, Zhang Z, Chen HH, et al. Ambient extrusion induced working hardening and their effect on mechanical properties in AZ31 hot-extrusion bar. Mater Sci Eng A. 2022;832:142437.
  • Mukai T, Yamanoi M, Watanabe H, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr Mater. 2001;45:89–94.
  • Han J, Chen J, Peng L, et al. Microstructure, texture and mechanical properties of friction stir processed Mg-14Gd alloys. Mater Design. 2017;130:90–102.
  • Peng JH, Zhang Z, Guo P, et al. The effect of surface mechanical attrition treatment on texture evolution and mechanical properties of AZ31 magnesium alloy. Mater Charact. 2019;148:26–34.
  • Lu K, Lu JT. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A. 2004;375–377:38–45.
  • Zhang ZP, Song X, Li XQ, et al. Research progress of metal surface mechanical treatment technology. J Nets Form Eng. 2021;13:159–171.
  • Mao XY, Sun JY, Feng YY, et al. High-temperature wear properties of gradient microstructure induced by ultrasonic impact treatment. Mater Lett. 2019;246:178–181.
  • Meng X, Duan M, Luo L, et al. The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment. Mater Sci Eng A. 2017;707:636–646.
  • Fuse K, Badheka V, Patel V, et al. Dual sided composite formation in Al 6061/B4C using novel bobbin tool friction stir processing. J Mater Res Technol 2021;13:1709–1721.
  • Sharma DK, Badheka V, Patel V, et al. Recent developments in hybrid surface metal matrix composites produced by friction stir processing: a review. J Tribol. 2021;143:050801-1-32.
  • Patel V, Li WY, Vairis A, et al. Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit Rev Solid State. 2019;44(5):378–426.
  • Meng XC, Huang YX, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci. 2021;115:100706.
  • Peng JH, Zhang Z, Huang JA, et al. The effect of the inhomogeneous microstructure and texture on the mechanical properties of AZ31 Mg alloys processed by friction stir processing. J Alloy Compd. 2019;792:16–24.
  • Suhuddin U, Mironov S, Sato Y, et al. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater. 2009;57(18):5406–5418.
  • Zhou M, Sun Y, Yoshiaki MM, et al. Quasi-in-situ investigation into the microstructure and texture evolution of pure magnesium during friction stir welding. J Magnes and Alloy. 2020;8(4):1071–1083.
  • Shang Q, Ni DR, Xue P, et al. Evolution of local texture and its effect on mechanical properties and fracture behavior of friction stir welded joint of extruded Mg-3Al-1Zn alloy. Mater Charact. 2017;128:14–22.
  • Asadi P, Akbari M, Karimi-Nemch H. Simulation of friction stir welding and processing, In Advances in friction stir welding and processing. Cambridge: Elsevier; 2014;499–542.
  • Sejani D, Li WY, Patel V. Stationary shoulder friction stir welding-low heat input joining technique: a review in comparison with conventional FSW and bobbin tool FSW. Crit Rev Solid State. 2021;47(6):865–914.
  • Chang CI, Du XH, Huang JC. Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing. Scr Mater. 2007;57(3):209–212.
  • Xie YM, Meng XC, Li YL, et al. Insight into ultra-refined grains of aluminum matrix composites via deformation-driven metallurgy. Compos Commun. 2021;26:100776.
  • Patel V, Li WY, Xu YX. Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy. Mater Manuf Process. 2019;34(2):177–182.
  • Bates WP, Patel V, Rana H, et al. Properties augmentation of cast hypereutectic Al–Si alloy through friction stir processing. Met Mater Int. 2023;29:215–228.
  • Barnett MR. Twinning and the ductility of magnesium alloys: part II. “Contraction” twins. Mater Sci Eng A. 2007;464:8–16.
  • Zhang Z. Twinning and its related work hardening during the ambient extrusion of a magnesium alloy. Mater Sci Eng A. 2013;577:125–137.
  • Peng JH, Zhang Z, Chen HH, et al. Tension-compression asymmetry and Bauschinger-like effect of AZ31 magnesium alloy bars processed by ambient extrusion. Mater Sci Eng A. 2023;862:144353.
  • Patel V, Li WY, Andersson J, et al. Enhancing grain refinement and corrosion behavior in AZ31B magnesium alloy via stationary shoulder friction stir processing. J Mater Res Technol. 2022;17:3150–3156.
  • Patel V, Li WY, Liu XC, et al. Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate. Mater Sci Eng A. 2020;784:139322.
  • Han D, Chen HM, Zang QH, et al. Effect of solution treatment on microstructure and properties of Mg-6Gd-3Y-1.5Zn-0.6Zr alloy. Mater Char. 2020;163:110295.
  • Callister WD. Materials science and engineering: an introduction. New York: John Wiley and Sons Inc; 2007.
  • Jin ZZ, Cheng XM, Zha M, et al. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg-Al-Zn alloys during gradient hot rolling. J Mater Sci Tech. 2019;35:2017–2026.
  • Zeng ZR, Zhu YM, Liu RL, et al. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation. Acta Mater. 2018;160:97–108.
  • Zeng ZR, Zhu YM, Liu RL, et al. Effect of alloying elements on room temperature tensile ductility in magnesium alloys. Acta Mater. 2018;160:97–108.
  • Xie YM, Meng XC, Chang YX, et al. Heteroatom modification enhances corrosion durability in high-mechanical-performance graphene-reinforced aluminum matrix composites. Adv Sci. 2022;9:2104464.