75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of annealing powder on microstructures and tensile properties of LPBF-processed Haynes230 superalloy

, , & ORCID Icon
Article: 2361982 | Received 27 Feb 2024, Accepted 27 May 2024, Published online: 11 Jun 2024

References

  • Kontis P, Chauvet E, Peng Z, et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys. Acta Mater. 2019;177:209–221. doi:10.1016/j.actamat.2019.07.041
  • Wahlmann B, Galgon F, Stark A, et al. Growth and coarsening kinetics of gamma prime precipitates in CMSX-4 under simulated additive manufacturing conditions. Acta Mater. 2019;180:84–96. doi:10.1016/j.actamat.2019.08.049
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369. doi:10.1038/nature23894
  • Gallmeyer TG, Moorthy S, Kappes BB, et al. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Addit Manuf. 2020;31:100977. doi:10.1016/j.addma.2019.100977
  • Yeung H, Lane B, Fox J. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Addit Manuf. 2019;30:100844. doi:10.1016/j.addma.2019.100844
  • Yan Q, Song B, Shi Y. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J Mater Sci Technol. 2020;41:199–208. doi:10.1016/j.jmst.2019.08.049
  • Witkin DB, Patel D, Albright TV, et al. Influence of surface conditions and specimen orientation on high cycle fatigue properties of Inconel 718 prepared by laser powder bed fusion. Int J Fatigue. 2020;132:105392. doi:10.1016/j.ijfatigue.2019.105392
  • Kruth J. Selective laser melting of iron-based powder. J Mater Process Technol. 2004;149(1-3):616–622. doi:10.1016/j.jmatprotec.2003.11.051
  • Furumoto T, Ogura R, Hishida K, et al. Study on deformation restraining of metal structure fabricated by selective laser melting. J Mater Process Technol. 2017;245:207–214. doi:10.1016/j.jmatprotec.2017.02.017
  • Zhang Z, Han Q, Liu Z, et al. Combined effects of heat treatment and TiB2 content on the high-temperature tensile performance of TiB2-modified Ni-based GH3230 alloy processed by laser powder bed fusion. Mater Sci Eng A. 2022;861:144379. doi:10.1016/j.msea.2022.144379
  • Tomus D, Rometsch PA, Heilmaier M, et al. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting. Addit Manuf. 2017;16:65–72. doi:10.1016/j.addma.2017.05.006
  • Xia T, Wang R, Bi Z, et al. Microstructure and mechanical properties of carbides reinforced nickel matrix alloy prepared by selective laser melting. Materials (Basel). 2021;14(17):4792. doi:10.3390/ma14174792
  • Wang H, Chen L, Dovgyy B, et al. Micro-cracking, microstructure and mechanical properties of Hastelloy-X alloy printed by laser powder bed fusion: as-built, annealed and hot-isostatic pressed. Addit Manuf. 2021;39:101853. doi:10.1016/j.addma.2021.101853
  • Wang W, Wang S, Zhang X, et al. Process parameter optimization for selective laser melting of Inconel 718 superalloy and the effects of subsequent heat treatment on the microstructural evolution and mechanical properties. J Manuf Process. 2021;64:530–543. doi:10.1016/j.jmapro.2021.02.004
  • Jackson KA. Mechanism of growth, in liquid metals and solidification, W. A. Tiller (eds.). ASM, Cleveland, Ohio, 1958, p. 276.
  • Ahmed R, Menon M, Hassan T. Haynes 230 high temperature thermo-mechanical fatigue constitutive model development. In: SEM Annual Conference & Exposition on Experimental and Applied Mechanics. 2014.
  • Lu YL, Liaw PK, Sun Y, et al. Hold-time effect on the elevated-temperature crack growth behavior of solid-solution-strengthened superalloys. Acta Mater. 2007;55(3):767–775. doi:10.1016/j.actamat.2006.06.044
  • Boehlert JC, Longanbach CS. A comparison of the microstructure and creep behavior of cold rolled HAYNES® 230 alloy™ and HAYNES® 282 alloy™. Mater Sci Eng A. 2011;528(15):4888–4898. doi:10.1016/j.msea.2011.03.019
  • Tang YT, Panwisawas C, Ghoussoub JN, et al. Alloys-by-design: application to new superalloys for additive manufacturing. Acta Mater. 2021;202:417–436. doi:10.1016/j.actamat.2020.09.023
  • Haack M, Kuczyk M, Seidel A, et al. Comprehensive study on the formation of grain boundary serrations in additively manufactured Haynes 230 alloy. Mater Charact. 2020;160:110092. doi:10.1016/j.matchar.2019.110092