2,573
Views
7
CrossRef citations to date
0
Altmetric
Special issue on Algal Culture collections in the –omics age

Exploiting the potential of Cyanidiales as a valuable resource for biotechnological applications

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 199-210 | Received 27 Jan 2020, Accepted 13 Apr 2020, Published online: 06 Aug 2020

References

  • Aguilera, A., Souza-Egipsy, V., Gómez, F., & Amils, R. (2007). Development and structure of eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microbial Ecology, 53, 294–305.
  • Aguilera, A., Souza-Egipsy, V., González-Toril, E., Rendueles, O., & Amils, R. (2010). Eukaryotic microbial diversity of phototrophic microbial mats in two Icelandic geothermal hot springs. International Microbiology : The Official Journal of the Spanish Society for Microbiology, 13, 21–32.
  • Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., & Moellering, E. R. (2017). Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 35, 647–652.
  • Albertano, P., Ciniglia, C., Pinto, G., & Pollio, A. (2000). The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: An update. Hydrobiologia, 433, 137–143.
  • Antelo, F. S., Costa, J. A. V., & Kalil, S. J. (2008). Thermal degradation kinetics of the phycocyanin from Spirulina platensis. Biochemical Engineering Journal, 41, 43–47.
  • Archibald, J. M., Simpson, A. G. B., & Slamovits, C. H. (2017). Handbook of the protists. Cham: Springer International Publishing.
  • Barbier, G., Oesterhelt, C., Larson, M. D., Halgren, R. G., Wilkerson, C., Garavito, R. M., … Weber, A. P. M. (2005). Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiology, 137, 460–474.
  • Barclay, W., Apt, K., & Dong, X. D. (2013). Commercial production of microalgae via fermentation. In John Wiley & Sons, Ltd, Handbook of microalgal culture (pp. 134–145). Oxford, UK: John Wiley & Sons, Ltd.
  • Barcyte, D., Nedbalova, L., Culka, A., Kosek, F., & Jehlicka, J. (2018). Burning coal spoil heaps as a new habitat for the extremophilic red alga Galdieria sulphuraria. Fottea, 18, 19–29.
  • Bimonte, M., de Lucia, A., Tito, A., et al. (2014). Cosmetic compositions based on extracts derived from the microalga Galdieria sulphuraria, particularly indicated to reduce the harmful effects caused by acne. Patent: MI2014A 000186.
  • Bottone, C., Camerlingo, R., Miceli, R., Salbitani, G., Sessa, G., Pirozzi, G., & Carfagna, S. (2018). Antioxidant and anti-proliferative properties of extracts from heterotrophic cultures of Galdieria sulphuraria. Natural Product Research, 1–5.
  • Bux, F., & Chisti, Y. (2016). Algae biotechnology. Products and processes. Green Energy Technology, 344.
  • Cagnac, O., Richard, L., & Labro, J. (2017). (Nouveau procede de culture d’algues rouges unicellulaires). Patent Application PCT/EP2016/072582.
  • Carfagna, S., Landi, V., Coraggio, F., Salbitani, G., Vona, V., Pinto, G., … Ciniglia, C. (2018). Different characteristics of C-phycocyanin (C-PC) in two strains of the extremophilic Galdieria phlegrea. Algal Research, 31, 406–412.
  • Carfagna, S., Napolitano, G., Barone, D., Pinto, G., Pollio, A., & Venditti, P. (2015). Dietary supplementation with the microalga Galdieria sulphuraria (rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues. Oxidative Medicine and Cellular Longevity, 2015, 732090.
  • Casas-Mollano, J. A., Rohr, J., Kim, E.-J., Balassa, E., van Dijk, K., & Cerutti, H. (2008). Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing. Genetics, 179, 69–81.
  • Castenholz, R. W., & McDermott, T. R. (2010). The Cyanidiales: Ecology, biodiversity, and biogeography. In J. Seckbach, D. Chapman (Eds.), Red Algae Genomic Age (pp. 357–371). Springer International Publishing.
  • Chaiklahan, R., Chirasuwan, N., & Bunnag, B. (2012). Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry, 47, 659–664.
  • Chen, C.-Y., Liu, C.-H., Lo, Y.-C., & Chang, J.-S. (2011). Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresource Technology, 102, 8484–8492.
  • Cho, C. H., Park, S. I., Ciniglia, C. Y. H., Cho, C., Park, S. H., Imke. (2019). Keynote and oral papers. European Journal of Phycology, 54, 31–117.
  • Ciniglia, C., Yoon, H. S., Pollio, A., Pinto, G., & Bhattacharya, D. (2004). Hidden biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology, 13, 1827–1838.
  • Čížková, M., Vítová, M., & Zachleder, V. (2019). The red microalga Galdieria as a promising organism for applications in biotechnology. In Microalgae - From physiology to application [Working Title]. IntechOpen.
  • Clippinger, J., & Davis, R. (2019). Techno-economic analysis for the production of algal biomass via closed photobioreactors: Future cost potential evaluated across a range of cultivation system designs. Golden: CO Natl Renew Energy Lab.
  • da Silva, T. L., & Reis, A. (2015). Scale-up problems for the large scale production of algae. In Algal biorefinery: An integrated approach (pp. 125–149). Cham: Springer International Publishing.
  • Davis, A. M., Iovinella, M., James, S., et al. (2016). Using MinION nanopore sequencing to generate a de novo eukaryotic draft genome: Preliminary physiological and genomic description of the extremophilic red alga Galdieria sulphuraria strain SAG 107.79. BioRxiv, 076208.
  • Del Mondo, A., Langellotti, A. L., Petraretti, M., Ciniglia, C., Pinto, G., Pollio, A. (2019). Seventh European phycological congress. European Journal of Phycology, 54, 108.
  • Doron, L., Segal, N., & Shapira, M. (2016). Transgene expression in microalgae—from tools to applications. Frontiers in Plant Science, 7, 505.
  • Edwards, M. R., Hauer, C., Stack, R. F., Eisele, L. E., & MacColl, R. (1997). Thermophilic C-phycocyanin: Effect of temperature, monomer stability, and structure. Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1321, 157–164.
  • Edwards, M. R., MacColl, R., & Eisele, L. E. (1996). Some physical properties of an unusual C-phycocyanin isolated from a photosynthetic thermophile. Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1276, 64–70.
  • Eichler-Stahlberg, A., Weisheit, W., Ruecker, O., & Heitzer, M. (2009). Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta, 229, 873–883.
  • Eisele, L. E., Bakhru, S. H., Liu, X., MacColl, R., & Edwards, M. R. (2000). Studies on C-phycocyanin from Cyanidium caldarium, a eukaryote at the extremes of habitat. Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1456, 99–107.
  • Eren, A., Iovinella, M., Yoon, H. S., Cennamo, P., de Stefano, M., de Castro, O., & Ciniglia, C. (2018). Genetic structure of Galdieria populations from Iceland. Polar Biology, 41, 1681–1691.
  • Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80, 1–14.
  • Fujiwara, T., Hirooka, S., Mukai, M., Ohbayashi, R., kanesaki, Y., Watanabe, S., & Miyagishima, S.-Y. (2019). Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae. Plant Direct, 3, e00134.
  • Fujiwara, T., Kanesaki, Y., Hirooka, S., Era, A., Sumiya, N., Yoshikawa, H., & Miyagishima, S.-Y. (2015). A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. Frontiers in Plant Science, 6, 657.
  • Fujiwara, T., Ohnuma, M., Kuroiwa, T., Ohbayashi, R., Hirooka, S., & Miyagishima, S.-Y. (2017). Development of a double nuclear gene-targeting method by two-step transformation based on a newly established chloramphenicol-selection system in the red alga Cyanidioschyzon merolae. Frontiers in Plant Science, 8, 343. PM - 28352279 M4 - Citavi.
  • Fujiwara, T., Ohnuma, M., Yoshida, M., Kuroiwa, T., & Hirano, T. (2013). Gene targeting in the red alga Cyanidioschyzon merolae: Single- and multi-copy insertion using authentic and chimeric selection markers. PloS One, 8, e73608.
  • Fukuda, S., Hirasawa, E., Takemura, T., Takahashi, S., Chokshi, K., Pancha, I., … Imamura, S. (2018). Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae. Scientific Reports, 8, 12410.
  • Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488, 329–335.
  • Graverholt, O. S., & Eriksen, N. T. (2007). Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Applied Microbiology and Biotechnology, 77, 69–75.
  • Graziani, G., Schiavo, S., Nicolai, M. A., Buono, S., Fogliano, V., Pinto, G., & Pollio, A. (2013). Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Function, 4, 144–152.
  • Griesbeck, C., Kobl, I., & Heitzer, M. (2006). Chlamydomonas reinhardtii: A protein expression system for pharmaceutical and biotechnological proteins. Molecular Biotechnology, 34, 213–224.
  • Gross, W., Heilmann, I., Lenze, D., & Schnarrenberger, C. (2001). Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. European Journal of Phycology, 36, 275–280.
  • Gross, W., Oesterhelt, C., Tischendorf, G., & Lederer, F. (2002). Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Republic). European Journal of Phycology, 37, 477–482.
  • Gross, W., & Schnarrenberger, C. (1995). Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant & Cell Physiology, 36, 633–638.
  • Guiry, M. D., & Guiry, G. M. (2017). AlgaeBase. Galway: World-wide electronic publication, National University of Ireland. Retrieved from https://www.algaebase.org
  • Guo, L., & Yang, G. (2015). Predicting the reproduction strategies of several microalgae through their genome sequences. Journal of Ocean University of China, 14, 491–502.
  • Guzmán-Zapata, D., Macedo-Osorio, K. S., Almaraz-Delgado, A. L., Durán-Figueroa, A., Badillo-Corona, J. A. (2016). Production of recombinant proteins in the chloroplast of the green alga Chlamydomonas reinhardtii. In Recombinant proteins from plants: Methods and protocols (pp. 69–85).
  • Hempel, F., Lau, J., Klingl, A., & Maier, U. G. (2011). Algae as protein factories: Expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PloS One, 6, e28424.
  • Hirooka, S., & Miyagishima, S. Y. (2016). Cultivation of acidophilic algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in media derived from acidic hot springs. Frontiers in Microbiology, 7, 2022.
  • Ho, S.-H., Chen, C.-Y., Lee, D.-J., & Chang, J.-S. (2011). Perspectives on microalgal CO2-emission mitigation systems — A review. Biotechnology Advances, 29, 189–198.
  • Imamura, S., Terashita, M., Ohnuma, M., Maruyama, S., Minoda, A., Weber, A. P. M., … Tanaka, K. (2010). Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: Genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant and Cell Physiology, 51, 707–717.
  • Imbimbo, P., Romanucci, V., Pollio, A., Fontanarosa, C., Amoresano, A., Zarrelli, A., & Monti, D. M. (2019). A cascade extraction of active phycocyanin and fatty acids from Galdieria phlegrea. Applied Microbiology and Biotechnology, 103, 9455–9464.
  • Iwai, M., Ikeda, K., Shimojima, M., & Ohta, H. (2014). Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnology Journal, 12, 808–819.
  • Kao, O. H., Edwards, M. R., & Berns, D. S. (1975). Physical-chemical properties of C-phycocyanin isolated from an acido-thermophilic eukaryote, Cyanidium caldarium. Biochemical Journal, 147, 63–70.
  • Kobayashi, Y., Ohnuma, M., Tanaka, K., & Ha-, M. (2010). The basics of cultivation and molecular genetic analysis of the unicellular red alga Cyanidioschyzon merolae. Cell, 20, 53–61.
  • Kobayashi, Y., & Tanaka, K. (2018). Lability in sulfur acidic cultivation medium explains unstable effects of CDK inhibitors on Cyanidioschyzon merolae cell proliferation. The Journal of General and Applied Microbiology, 64, 299–302.
  • Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H., & Miyachi, S. (1995). Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Conversion and Management, 36, 689–692.
  • Kuroiwa, T. (1998). The primitive red algae Cyanidium caldarium and Cyanidioschyzon merolae as model system for investigating the dividing apparatus of mitochondria and plastids. BioEssays, 20, 344–354.
  • Lee, R. E. (2009). Phycology (4th ed.). Cambridge: Cambridge University Press.
  • Leu, J.-Y., Lin, T.-H., Selvamani, M. J. P., Chen, H.-C., Liang, J.-Z., & Pan, K.-M. (2013). Characterization of a novel thermophilic cyanobacterial strain from Taian hot springs in Taiwan for high CO2 mitigation and C-phycocyanin extraction. Process Biochemistry, 48, 41–48.
  • Liang, Y., Kaczmarek, M. B., Kasprzak, A. K., Tang, J., Shah, M. M. R., Jin, P., … Daroch, M. (2018). Thermosynechococcaceae as a source of thermostable C-phycocyanins: Properties and molecular insights. Algal Research, 35, 223–235.
  • Lu, Y., Chi, X., Yang, Q., Li, Z., Liu, S., Gan, Q., & Qin, S. (2009). Molecular cloning and stress-dependent expression of a gene encoding Δ12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles, 13, 875–884.
  • Lundquist, T., Woertz, I., Quinn, N., & Benemann, J. (2010). A realistic technology and engineering assessment of algae biofuel production. Energy Biosci Inst. Retrieved January 23, 2018 from http://digitalcommons.calpoly.edu/cenv_fac/188
  • Mallick, N., Bagchi, S. K., Koley, S., & Singh, A. K. (2016). Progress and challenges in microalgal biodiesel production. Frontiers in Microbiology, 7.
  • Martinez-Garcia, M., & van der Maarel, M. J. E. C. (2016). Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express, 6, 71.
  • Massa, M., Buono, S., Langellotti, A. L., Martello, A., Russo, G. L., Troise, D. A., Sacchi, R., Vitaglione, P., & Fogliano, V. (2019). Biochemical composition and in vitro digestibility of Galdieria sulphuraria grown on spent cherry-brine liquid. New Biotechnol ogy, 53, 9–15. (2019).
  • Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S.-Y., … Kuroiwa, T. (2004). Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 428, 653–657.
  • Merola, A., Castaldo, R., De Luca, P., Gambardella, R., Musacchio, A., & Taddei, R. (1981). Revision of Cyanidium caldarium. three species of acidophilic algae. Giornale Botanico Italiano, 115, 189–195.
  • Milledge, J. J., & Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Bio/Technology, 12, 165–178.
  • Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T., & Tanaka, K. (2004). Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant and Cell Physiology, 45, 667–671.
  • Minoda, A., Sawada, H., Suzuki, S., Miyashita, S.-I., Inagaki, K., Yamamoto, T., & Tsuzuki, M. (2015). Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Applied Microbiology and Biotechnology, 99, 1513–1519.
  • Modeste, V., Brient, A., Thirion-Delalande, C., Forster, R., Aguenou, C., Griffiths, H., & Cagnac, O. (2019). Safety evaluation of Galdieria high-protein microalgal biomass. Toxicology Research and Application, 3.
  • Moon, M., Mishra, S. K., & Kim, C. W. (2014). Isolation and characterization of thermostable phycocyanin from Galdieria sulphuraria. Korean Journal of Chemical Engineering, 29, 490–495.
  • Mori, N., Moriyama, T., Toyoshima, M., & Sato, N. (2016). Construction of global acyl lipid metabolic map by comparative genomics and subcellular localization analysis in the red alga Cyanidioschyzon merolae. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00958.
  • Moriyama, T., Mori, N., & Sato, N. (2015). Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: Evidence for heterotrophic growth. Springerplus, 4, 559.
  • Nikolova, D., Weber, D., Scholz, M., Bald, T., Scharsack, J. P., & Hippler, M. (2017). Temperature-induced remodeling of the photosynthetic machinery tunes photosynthesis in the thermophilic alga Cyanidioschyzon merolae. Plant Physiology, 174, 35–46.
  • Nozaki, H., Takano, H., Misumi, O., Terasawa, K., Matsuzaki, M., Maruyama, S., Nishida, K., Yagisawa, F., Yoshida, Y., Fujiwara, T., Takio, S., Tamura, K., Chung, S. J., Nakamura, S., Kuroiwa, H., Tanaka, K., Sato, N., & Kuroiwa, T. (2007). A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biology, 5. doi:10.1186/1741-7007-5-28
  • Oesterhelt, C., Schnarrenberger, C., & Gross, W. (1999). Characterization of a sugar/polyol uptake system in the red alga Galdieria sulphuraria. European Journal of Phycology, 34, 271–277.
  • Ohnuma, M., Misumi, O., Fujiwara, T., Watanabe, S., Tanaka, K., & Kuroiwa, T. (2009). Transient gene suppression in a red alga, Cyanidioschyzon merolae 10D. Protoplasma, 236, 107–112.
  • Ohnuma, M., Yokoyama, T., Inouye, T., Sekine, Y., Kuroiwa, T., & Tanaka, K. (2011). Optimization of polyethylene glycol (PEG)-mediated DNA introduction conditions for transient gene expression in the unicellular red alga Cyanidioschyzon merolae. The Journal of General and Applied Microbiology, 60, 156–159.
  • Ohnuma, M., Yokoyama, T., Inouye, T., Sekine, Y., & Tanaka, K. (2008). Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant and Cell Physiology, 49, 117–120.
  • Ohta, N., Matsuzaki, M., & Misumi, O. (2003). Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Research, 10, 67–77.
  • Ohta, N., Sato, N., & Kuroiwa, T. (1998). Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Research, 26, 5190–5198.
  • Overmann, J., & Smith, D. (2017). Microbial resource centers contribute to bioprospecting of bacteria and filamentous microfungi. In Bioprospecting (pp. 51–79). Cham: Springer.
  • Packer, M. A., Harris, G. C., & Adams, S. L. (2016). Food and feed applications of algae (pp. 217–247). Cham: Springer.
  • Patel, A., Matsakas, L., Rova, U., & Christakopoulos, P. (2019). A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresource Technology, 278, 424–434.
  • Patel, A., Pawar, R., Mishra, S., Sonawane, S., & Ghosh, P. K. (2004). Kinetic studies on thermal denaturation of C-phycocyanin. Indian journal of Biochemistry & Biophysics, 41, 254–257.
  • Rahman, D. Y., Sarian, F. D., & van der Maarel, M. J. E. C. (2020). Biomass and phycocyanin content of heterotrophic Galdieria sulphuraria 074G under maltodextrin and granular starches–feeding conditions. Journal of Applied Phycology, 32, 51–57.
  • Rahman, D. Y., Sarian, F. D., van Wijk, A., Martinez-Garcia, M., & van der Maarel, M. J. E. C. (2017). Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant. Journal of Applied Phycology, 29, 1233–1239.
  • Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews, 27, 622–653.
  • Romay, C., González, R., Ledón, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, 4, 207–216.
  • Rossoni, A. W., Price, D. C., Seger, M., et al. (2019a). The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. Elife, 8.
  • Rossoni, A. W., Schönknecht, G., & Lee, H. J. (2019b). Cold acclimation of the thermoacidophilic red alga Galdieria sulphuraria: Changes in gene expression and involvement of horizontally acquired genes. Plant and Cell Physiology, 60, 702–712.
  • Roth, L. G., Berns, D. S., & Chen, C.-H. (1996). Comparative thermodynamic elucidation of the structural stability of thermophilic proteins. Biophysical Chemistry, 60, 89–97.
  • Sato, N., & Moriyama, T. (2007). Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: Lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryotic Cell, 6, 1006–1017.
  • Sato, N., Moriyama, T., Mori, N., & Toyoshima, M. (2017). Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World Journal of Microbiology and Biotechnology, 33, 74.
  • Schmidt, R. A., Wiebe, M. G., & Eriksen, N. T. (2005). Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnology and Bioengineering, 90, 77–84.
  • Schonknecht, G., Chen, W.-H., Ternes, C. M., Barbier, G. G., Shrestha, R. P., Stanke, M., … Weber, A. P. M. (2013). Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science (80-), 339, 1207–1210.
  • Selvaratnam, T., Pegallapati, A. K., Montelya, F., Rodriguez, G., Nirmalakhandan, N., Van Voorhies, W., & Lammers, P. J. (2014). Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. Bioresource Technology, 156, 395–399.
  • Sloth, J. K., Jensen, H. C., Pleer, D., & Eriksen, N. T. (2017). Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Bioresource Technology, 238, 296–305.
  • Sloth, J. K., Wiebe, M. G., & Eriksen, N. T. (2006). Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology, 38, 168–175.
  • Sørensen, L., Hantke, A., & Eriksen, N. T. (2013). Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. Journal of the Science of Food and Agriculture, 93, 2933–2938.
  • Stark, M. R., Dunn, E. A., Dunn, W. S. C., Grisdale, C. J., Daniele, A. R., Halstead, M. R. G., & Rader, S. D. (2015). Dramatically reduced spliceosome in Cyanidioschyzon merolae. Proceedings of the National Academy of Sciences, 112, E1191–E1200.
  • Sumiya, N., Fujiwara, T., Kobayashi, Y., Misumi, O., & Miyagishima, S.-Y. (2014). Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. PloS One, 9, e111261.
  • Takeuchi, R., & Roberts, J. (2016). Targeted mutagenesis in spirulina. Patent US20170298319A1.
  • Taki, K., Sone, T., Kobayashi, Y., Watanabe, S., Imamura, S., & Tanaka, K. (2015). Construction of a URA5.3 deletion strain of the unicellular red alga Cyanidioschyzon merolae: A backgroundless host strain for transformation experiments. The Journal of General and Applied Microbiology, 61, 211–214.
  • Takusagawa, M., Nakajima, Y., Saito, T., & Misumi, O. (2016). Primitive red alga Cyanidioschyzon merolae accumulates storage glucan and triacylglycerol under nitrogen depletion. The Journal of General and Applied Microbiology, 62, 111–117.
  • Tchinda, D., Henkanatte-Gedera, S. M., Abeysiriwardana-Arachchige, I. S. A., Delanka-Pedige, H. M. K., Munasinghe-Arachchige, S. P., Zhang, Y., & Nirmalakhandan, N. (2019). Single-step treatment of primary effluent by Galdieria sulphuraria: Removal of biochemical oxygen demand, nutrients, and pathogens. Algal Research, 42, 101578.
  • Toyoshima, M., Mori, N., Moriyama, T., Misumi, O., & Sato, N. (2016). Analysis of triacylglycerol accumulation under nitrogen deprivation in the red alga Cyanidioschyzon merolae. Microbiology, 162, 803–812.
  • Uemura, K., Anwaruzzaman, M. S., & Yokota, A. (1997). Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from thermophilic red algae with a strong specificity for CO2Fixation. Biochemical and Biophysical Research Communications, 233, 568–571.
  • Van der Maarel, M. J. E. C., Martinez-Garcia, M., & Sarian, F. D. (2016). (Patent: PCT/NL20 15/050867 Natural blue photopigments, methods for producing them and to uses thereof as colorant).
  • Varshney, P., Mikulic, P., Vonshak, A., Beardall, J., & Wangikar, P. P. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology, 184, 363–372.
  • Vítová, M., Čížková, M., & Zachleder, V. (2019). Lanthanides and algae. In Lanthanides. IntechOpen.
  • Wan, M., Wang, Z., Zhang, Z., Wang, J., Li, S., Yu, A., & Li, Y. (2016). A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresource Technology, 218, 272–278.
  • Wang, H., Zhang, Z., Wan, M., Wang, R., Huang, J., Zhang, K., Guo, J., Bai, W., & Li, Y. (2019).Comparative study on light attenuation models of Galdieria sulphuraria for efficient production of phycocyanin. Journal of Applied Phycology, 37, 165-174.
  • Wang, H., Zhang, Z., Wan, M., Wang, R., Huang, J., Zhang, K., … Li, Y. (2020). Comparative study on light attenuation models of Galdieria sulphuraria for efficient production of phycocyanin. Journal of Applied Phycology, 32, 165–174.
  • Watanabe, S., Ohnuma, M., Sato, J., Yoshikawa, H., & Tanaka, K. (2011). Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae. The Journal of General and Applied Microbiology, 57, 69–72.
  • Weber, A., Oesterhelt, C., Gross, W., Brutigam, A., Imboden, L., Krassovskaya, I., … Benning, C. (2004). EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Molecular Biology, 55, 17–32.
  • Weber, A. P. M., Horst, R. J., Barbier, G. G., & Oesterhelt, C. (2007). Metabolism and metabolomics of eukaryotes living under extreme conditions. International Review of Cytology, 256, 1–34. PM - 17241903 M4 - Citavi.
  • Williams, P. J. L. B., & Laurens, L. M. L. (2010). Microalgae as biodiesel & biomass feedstocks: Review and analysis of the biochemistry, energetics and economics. Energy & Environmental Science, 3, 554.
  • Yoon, H. S., Ciniglia, C., Wu, M., Comeron, J. M., Pinto, G., Pollio, A., & Bhattacharya, D. (2006). Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evolutionary Biology, 6, 78. PM - 17022817 M4 - Citavi.
  • Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., & Romanowska, E. (2017a). Transformation of the Cyanidioschyzon merolae chloroplast genome: Prospects for understanding chloroplast function in extreme environments. Plant Molecular Biology, 93, 171–183. T4.
  • Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., & Romanowska, E. (2017b). Chloramphenicol acetyltransferase—a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae. Protoplasma, 254, 587–596.