1,061
Views
4
CrossRef citations to date
0
Altmetric
Applied Phycology for Sustainable Development

Anti-HIV activity of methanolic and aqueous extracts of fifteen materials of beach-cast macroalgae: valorization of underused waste biomass

ORCID Icon & ORCID Icon
Pages 236-246 | Received 09 Jul 2021, Accepted 13 Sep 2021, Published online: 17 Mar 2022

References

  • Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., & Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: A review. BioMed Research International, 2015, 1–10.
  • Ahn, M. J., Yoon, K. D., Kim, C. Y., Kim, J. H., Shin, C. G., & Kim, J. (2006). Inhibitory activity on HIV‐1 reverse transcriptase and integrase of a carmalol derivative from a brown alga. Ishige Okamurae. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20, 711–713.
  • Ahn, M. J., Yoon, K. D., Kim, C. Y., Min, S. Y., Kim, Y. U., Kim, H. J., … Kim, S. H. (2002). Inhibition of HIV-1 reverse transcriptase and HIV-1 integrase and antiviral activity of Korean seaweed extracts. Journal of Applied Phycology, 14, 325–329.
  • Ahn, M. J., Yoon, K. D., Min, S. Y., Lee, J. S., Kim, J. H., Kim, T. G., & Kim, J. (2004). Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biological & Pharmaceutical Bulletin, 27, 544–547.
  • Alexandre, K. B., Gray, E. S., Mufhandu, H., McMahon, J. B., Chakauya, E., O’Keefe, B. R., & Morris, L. (2012). The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4+ cells. Virology, 423, 175–186.
  • Amorim, A. M. P. B. (2018). Study of antioxidants, bioactive potential and chemical composition of Chnoospora minima, Dictyopteris plagiogramma, Padina gymnospora, Sargassum cymosum (Ochrophyta) and Codium isthmocladum (Chlorophyta). master dissertation. Institute of Bioscience. University of São Paulo. 122. doi.10.11606/D.41.2019.tde-18022019-091636
  • Artan, M., Karadeniz, F., Karagozlu, M. Z., Kim, M. M., & Kim, S. K. (2010). Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydrate Research, 345, 656–662.
  • Artan, M., Li, Y., Karadeniz, F., Lee, S. H., Kim, M. M., & Kim, S. K. (2008). Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorganic & Medicinal Chemistry, 16, 7921–7926.
  • Besednova, N. N., Zvyagintseva, T. N., Kuznetsova, T. A., Makarenkova, I. D., Smolina, T. P., Fedyanina, L. N., & Zaporozhets, T. S. (2019). Marine algae metabolites as promising therapeutics for the prevention and treatment of HIV/AIDS. Metabolites, 9, 87.
  • Bianco, É. M., De Oliveira, S. Q., Rigotto, C., Tonini, M. L., Da rosa guimarães, T., Bittencourt, F., & Martins, C. D. L. (2013). Anti-infective potential of marine invertebrates and seaweeds from the Brazilian coast. Molecules, 18, 5761–5778.
  • Cavalcanti, D. N., de Oliveira, M. A. R., De-Paula, J. C., Barbosa, L. S., Fogel, T., Pinto, M. A., … Teixeira, V. L. (2011). Variability of a diterpene with potential anti-HIV activity isolated from the Brazilian brown alga Dictyota menstrualis. Journal of Applied Phycology, 23, 873–876.
  • Cos, P., Vlietinck, A. J., Berghe, D. V., & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. Journal of Ethnopharmacology, 106, 290–302.
  • Deyab, M., Elkatony, T., & Ward, F. (2016). Qualitative and quantitative analysis of phytochemical studies on brown seaweed. Dictyota dichotoma. International Journal of Engineering Development and Research, 4, 2321–2330.
  • El Safadi, Y., Vivet-Boudou, V., & Marquet, R. (2007). HIV-1 reverse transcriptase inhibitors. Applied Microbiology and Biotechnology, 75, 723–737.
  • Fernández, P. V., Arata, P. X., & Ciancia, M. (2014). Polysaccharides from Codium species: Chemical structure and biological activity their role as components of the cell wall. Advances in Botanical Research, 71, 253–278.
  • Gentile, D., Patamia, V., Scala, A., Sciortino, M. T., Piperno, A., & Rescifina, A. (2020). Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Marine Drugs, 18, 225.
  • Gómez-Guzmán, M., Rodríguez-Nogales, A., Algieri, F., & Gálvez, J. (2018). Potential role of seaweed polyphenols in cardiovascular-associated disorders. Marine Drugs, 16, 250.
  • Harb, T. B., Pereira, M. S., Cavalcanti, M. I. L. G., Fujii, M. T., & Chow, F. (2021). Antioxidant activity and related chemical composition of extracts from Brazilian beach-cast marine algae: Opportunities of turning a waste into a resource. Journal of Applied Phycology, 33, 3383–3395.
  • Huskens, D., & Schols, D. (2012). Algal lectins as potential HIV microbicide candidates. Marine Drugs, 10, 1476–1497.
  • Jordheim, L. P., Durantel, D., Zoulim, F., & Dumontet, C. (2013). Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nature Reviews. Drug Discovery, 12, 447–464.
  • Karaki, N., Sebaaly, C., Chahine, N., Faour, T., Zinchenko, A., Rachid, S., & Kanaan, H. (2013). The antioxidant and anticoagulant activities of polysaccharides isolated from the brown algae Dictyopteris polypodioides growing on the Lebanese coast. Journal of Applied Pharmaceutical Science, 3, 43–51.
  • Khora, S. S., & Navya, P. (2020). Bioactive polysaccharides from marine macroalgae. Encyclopedia of Marine Biotechnology, 121–145. doi:10.1002/9781119143802.ch6
  • Kim, S. K., & Karadeniz, F. (2011). Anti-HIV activity of extracts and compounds from marine algae. Advances in Food and Nutrition Research, 64. doi:10.1016/B978-0-12-387669-0.00020-X
  • Klongklaew, N., Praiboon, J., Tamtin, M., & Srisapoome, P. (2020). Antibacterial and antiviral activities of local Thai green macroalgae crude extracts in pacific white shrimp (Litopenaeus vannamei). Marine Drugs, 18, 140.
  • Kwon, H. J., Ryu, Y. B., Kim, Y. M., Song, N., Kim, C. Y., Rho, M. C., & Park, S. J. (2013). In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorganic & Medicinal Chemistry, 21, 4706–4713.
  • Mattos, B. B., Romanos, M. T. V., Souza, L. M. D., Sassaki, G., & Barreto-Bergter, E. (2011). Glycolipids from macroalgae: Potential biomolecules for marine biotechnology? Revista Brasileira De Farmacognosia, 21, 244–247.
  • Mendis, E., & Kim, S. K. (2011). Present and future prospects of seaweeds in developing functional foods. Advances in Food and Nutrition Research, 64, 1–15.
  • Murray, M., Dordevic, A. L., Ryan, L., & Bonham, M. P. (2018). An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols. Critical Reviews in Food Science and Nutrition, 58, 1342–1358.
  • Nunes, N., Ferraz, S., Valente, S., Barreto, M. C., & De Carvalho, M. P. (2017). Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira Archipelago. Journal of Applied Phycology, 29, 2427–2437.
  • Pina-Pérez, M. C., Rivas, A., Martínez, A., & Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry, 235, 34–44.
  • Premnathan, M., Chandra, K., Bajpai, S. K., & Kathiresan, K. (1992). A survey of some Indian marine plants for antiviral activity. Botanica Marina, 35, 321–324.
  • Queiroz, K. C. S., Medeiros, V. P., Queiroz, L. S., Abreu, L. R. D., Rocha, H. A. O., Ferreira, C. V., & Leite, E. L. (2008). Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomedicine & Pharmacotherapy, 62, 303–307.
  • Rodrigues, J. A., Torres, V. M., de Alencar, D. B., Sampaio, A. H., & Farias, W. R. (2009). Extraction and anticoagulant activity of sulfated polysaccharides from the red marine alga. Halymenia Pseudofloresia. Revista Ciência Agronômica, 40, 224.
  • Rosales-Mendoza, S., García-Silva, I., González-Ortega, O., Sandoval-Vargas, J. M., Malla, A., & Vimolmangkang, S. (2020). The potential of algal biotechnology to produce antiviral compounds and biopharmaceuticals. Molecules, 25, 4049.
  • Sangtani, R., Ghosh, A., Jha, H. C., Parmar, H. S., & Bala, K. (2020). Potential of algal metabolites for the development of broad-spectrum antiviral therapeutics: Possible implications in COVID-19 therapy. Phytotherapy Research, 35, 2296–2316.
  • Santos, J. P., Torres, P. B., dos Santos, D. Y., Motta, L. B., & Chow, F. (2019). Seasonal Effects on Antioxidant and anti-HIV Activities of Brazilian Seaweeds. Journal of Applied Phycology, 31, 1333–1341.
  • Sarafianos, S. G., Marchand, B., Das, K., Himmel, D. M., Parniak, M. A., Hughes, S. H., & Arnold, E. (2009). Structure and function of HIV-1 reverse transcriptase: Molecular mechanisms of polymerization and inhibition. Journal of Molecular Biology, 385, 693–713.
  • Sato, Y., Hirayama, M., Morimoto, K., Yamamoto, N., Okuyama, S., & Hori, K. (2011). High mannose-binding lectin with preference for the cluster of α1–2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. Journal of Biological Chemistry, 286, 19446–19458.
  • Shi, Q., Wang, A., Lu, Z., Qin, C., Hu, J., & Yin, J. (2017). Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydrate Research, 453-454, 1–9.
  • Singh, R. S., & Walia, A. K. (2018). Lectins from Red Algae and Their Biomedical Potential. Journal of Applied Phycology, 30, 1833–1858.
  • Snedecor, G. W. (1966). Metodos estadisticos: Aplicacion a la investigacion agricola y biologica (No. C015. 027). Compania Editorial Continental SA.
  • Spieler, R. (2002). Seaweed compound’s anti-HIV efficacy will be tested in Southern Africa. The Lancet, 359, 1675.
  • Thuy, T. T. T., Ly, B. M., Van, T. T. T., Van Quang, N., Tu, H. C., Zheng, Y., & Ai, U. (2015). Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydrate Polymers, 115, 122–128.
  • Torres, M. D., Flórez-Fernández, N., & Domínguez, H. (2019). Integral utilization of red seaweed for bioactive production. Marine Drugs, 17, 314.
  • Trinchero, J., Ponce, N. M., Córdoba, O. L., Flores, M. L., Pampuro, S., Stortz, C. A., … Turk, G. (2009). Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23, 707–712.
  • Turville, S. G., Aravantinou, M., Miller, T., Kenney, J., Teitelbaum, A., Hu, L., & Lifson, J. D. (2008). Efficacy of Carraguard®-based microbicides in vivo despite variable in vitro activity. PloS One, 3, e3162.
  • Vlietinck, A. J., De Bruyne, T., Apers, S., & Pieters, L. A. (1998). Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Medica, 64, 97–109.
  • Wang, H., Ooi, E. V., & Ang, P. O. (2008). Antiviral activities of extracts from Hong Kong seaweeds. Journal of Zhejiang University. Science. B, 9, 969–976.
  • Weiner, M. L. (2016). Parameters and pitfalls to consider in the conduct of food additive research, Carrageenan as a case study. Food and Chemical Toxicology, 87, 31–44.
  • WHO, World Health Organization. (2019). Retrieved from https://www.who.int/hiv/data/en/accessedat15/17/2020
  • Wittine, K., Saftić, L., Peršurić, Ž., & Kraljević Pavelić, S. (2019). Novel antiretroviral structures from marine organisms. Molecules, 24, 3486.
  • Witvrouw, M., Este, J. A., Mateu, M. Q., Reymen, D., Andrei, G., Snoeck, R., & De Clercq, E. (1994). Activity of a sulfated polysaccharide extracted from the red seaweed Aghardhiella tenera against human immunodeficiency virus and other enveloped viruses. Antiviral Chemistry & Chemotherapy, 5, 297–303.
  • Woradulayapinij, W., Soonthornchareonnon, N., & Wiwat, C. (2005). In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. Journal of Ethnopharmacology, 101, 84–89.
  • Yasuhara-Bell, J., & Lu, Y. (2010). Marine compounds and their antiviral activities. Antiviral Research, 86, 231–240.
  • Yoshie-Stark, Y., Hsieh, Y. P., & Suzuki, T. (2003). Distribution of flavonoids and related compounds from seaweeds in Japan. Journal-Tokyo University of Fisheries, 89, 1–6.
  • Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A review on antibiotic resistance: Alarm bells are ringing. Cureus, 9, 6.
  • Zeitlin, L., Whaley, K. J., Hegarty, T. A., Moench, T. R., & Cone, R. A. (1997). Tests of vaginal microbicides in the mouse genital herpes model. Contraception, 56, 329–335.