3,218
Views
2
CrossRef citations to date
0
Altmetric
Review

Using macroalgae to address UN Sustainable Development goals through CO2 remediation and improvement of the aquaculture environment

& ORCID Icon
Pages 360-367 | Received 08 Aug 2021, Accepted 31 Dec 2021, Published online: 04 Mar 2022

References

  • Ahmed, N., Stuart, W., Bunting, S. W., Glaser, M., Flaherty, M. S., & Diana, J. S. (2017). Can greening of aquaculture sequester blue carbon? AMBIO, 46, 468–477.
  • Barrington, K., Chopin, T., & Robinson, S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In D. Soto (Ed.), Integrated mariculture: A global review (Vol. 529, pp. 7–46). Rome, FAO: FAO Fisheries and Aquaculture Technical Paper.
  • Beardall, J., & Raven, J. A. (2020). Structural and biochemical features of carbon acquisition in algae. In A. Larkum, A. Grossman, and J. Raven (Eds.), Photosynthesis in algae: Biochemical and physiological mechanisms. Advances in photosynthesis and respiration (including bioenergy and related processes) (Vol. 45, pp.141–160). Cham: Springer, doi:10.1007/978-3-030-33397-3_7
  • Beer, S., Björk, M., & Beardall, J. (2021). Carbon dioxide vs. bicarbonate utilisation. In K. S. Gao, H. D A., & J. Beardall (Eds.), Research methods of environmental physiology in aquatic sciences (pp. 153–164). Singapore: Springer.
  • Bell, E. C. (1993). Photosynthetic response to temperature and desiccation of the intertidal alga Mastocarpus papillatus. Marine Biology, 117, 337–346.
  • Brewer, P. G., & Peltzer, E. T. (2009). Limits to marine life. Science, 324, 347–348.
  • Buschmann, A. H., Camus, C., Infante, J., Neori, A., Israel, I., Hernández-González, M. C., … Critchley, A. T. (2017). Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology, 52, 391–406.
  • Buschmann, A. H., Varela, D. A., Hernández-González, M. C., & Huovinen, P. (2008). Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: Determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Journal of Applied Phycology, 20, 571–577.
  • Chen, J., Li, H. M., Zhang, Z. H., He, C., Shi, Q., Jiao, N. Z., & Zhang, Y. Y. (2020). DOC dynamics and bacterial community succession during long-term degradation of Ulva prolifera and their implications for the legacy effect of green tides on refractory DOC pool in seawater. Water Research, 185, 116268.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.
  • Chung, I. K., Beardall, J., Mehta, S., Sahoo, D., & Stojkovic, S. (2011). Using marine macroalgae for carbon sequestration: A critical appraisal. Journal of Applied Phycology, 23, 877–886.
  • Chung, I. K., Oak, J. H., Lee, J. A., Shim, J. A., Kim, J. G., & Park, K.-S. (2013). Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean Project Overview. ICES Journal of Marine Science, 70, 1038–1044.
  • Chung, I. K., Sondak, C. F. A., & Beardall, J. (2017). The future of seaweed aquaculture in a rapidly changing world. European Journal of Phycology, 52, 495–505.
  • Denny, M. W. (1993). Air and water. The biology and physics of life’s media. Princeton, NJ: Princeton University Press.
  • Duarte, C. M., Wu, J. P., Xiao, X., Bruhn, A., & Krause-Jensen, D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science, 4, 100.
  • Dupont, S., Hall, E., Calosi, P., & Lundve, B. (2014). First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. Journal of Shellfish Research, 33, 857–861.
  • Falkowski, P. G., & Raven, J. A. (2013). Aquatic photosynthesis. New Jersey: Princeton University Press.
  • FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome, DOI:10.4060/ca9229en.
  • Froehlich, H. E., Afflerbach, J. C., Frazier, M., & Halpern, B. S. (2019). Blue growth potential to mitigate climate change through seaweed offsetting. Current Biology, 29, 3087.
  • Gao, K. S., & Aruga, Y. (1987). Preliminary studies of the photosynthesis and respiration of Porphyra yezoensis under emersed conditions. Journal of the Tokyo University of Fisheries, 47, 51–65.
  • Gao, K. S., Aruga, Y., Asada, K., Ishihara, T., Akano, T., & Kiyohara, M. (1991). Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. Journal of Applied Phycology, 3, 355–362.
  • Gao, G., Burgess, J. G., Wu, M., Wang, S. J., & Gao, K. S. (2020a). Using macroalgae as biofuel: Current opportunities and challenges. Botanica Marina, 63, 355–370.
  • Gao, K. S., Gao, G., Wang, Y. J., & Dupont, S. (2020b). Impacts of ocean acidification under multiple stressors on typical organisms and ecological processes. Marine Life Science & Technology, 2, 279–291.
  • Gao, K. S., Ji, Y., & Aruga, Y. (1999). Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologia, 398/399, 355–359.
  • Gao, K. S., & McKinley, K. R. (1994). Use of macroalgae for marine biomass production and CO2 remediation: A review. Journal of Applied Phycology, 6, 45–60.
  • Gao, K. S., Xu, J. T., Zheng, Y. Q., & Ke, C. H. (2012). Measurement of benthic photosynthesis and calcification in flowing-through seawater with stable carbonate chemistry. Limnology and Oceanography-Methods, 10, 555–559.
  • Haglund, K., & Pedersen, M. (1988). Spray cultivation of seaweeds in recirculating brackish water. Aquaculture, 72, 181–189.
  • Hanisak, M. D. (1987). Cultivation of Gracilaria and other macroalgae in Florida for energy production. In K. T. Bird & P. H. Benson (Eds.), Seaweed cultivation for renewable resources (pp. 191–218). Amsterdam: Elsevier.
  • Hill, R., Bellgrove, A., Macreadie, P. I., Petrou, K., Beardall, J., Steven, A., & Ralph, P. J. (2015). Can macroalgae contribute to blue carbon? An Australian perspective. Limnology and Oceanography, 60, 1689–1706.
  • Hurd, C. L., Beardall, J., Comeau, S., Cornwall, C. E., Havenhand, J. N., Munday, P. L., … McGraw, C. M. (2020). Ocean acidification as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life. Marine and Freshwater Research, 71, 263–274.
  • Ji, Y., & Gao, K. S. (2021). Effects of climate change factors on marine macroalgae: A review. Advances in Marine Biology, 88, 91–136.
  • Jiao, N. Z., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., … Azam, F. (2010). Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Reviews Microbiology, 8, 593–599.
  • Jin, P., Hutchins, D. A., & Gao, K. S. (2020). The impacts of ocean acidification on marine food quality and its potential food chain consequences. Frontiers in Marine Science, 7, 780.
  • Jin, P., Wang, T. F., Liu, N. N., Dupont, S., Beardall, J., Boyd, P. W., … Gao, K. S. (2015). Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 6, 8714.
  • Krause-Jensen, D., & Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9, 737–742.
  • Kurihara, H. (2008). Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series, 373, 275–284.
  • Madsen, T. V., & Maberly, S. C. (1990). A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). Journal of Phycology, 26, 24–30.
  • Mahmood, T., Fang, J. G., Jiang, Z. J., & Zhang, J. (2016). Seasonal nutrient chemistry in an integrated multi-trophic aquaculture region: Case study of Sanggou Bay from North China. Chemistry and Ecology, 32, 149–168.
  • Mangott, A., Nappi, J., Delli Paoli Carini, A., Goncalves, P., Hua, K., Domingos, J. A., … Thomas, T. (2020). Ulva lactuca as a functional ingredient and water bioremediator positively influences the hepatopancreas and water microbiota in the rearing of Litopenaeus vannamei. Algal Research, 51, 102040.
  • Marinho-Soriano, E., Nunes, S. O., Carneiro, M. A. A., & Pereira, D. C. (2009). Nutrients‘ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass and Bioenergy, 33, 327–331.
  • McKendry, P. (2002). Energy production from biomass (part 2): Conversion technologies. Bioresource Technology, 83, 47–54.
  • Moeller, H. W., Griffen, G., & Lee, V. (1982). Aquatic biomass production on land using seawater spray. Int. Gas Technol. Meetings January, 25–28, 237–248.
  • Moreira, D., & Pires, J. C. M. (2016). Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource Technology, 215, 371–379.
  • Noisette, F., & Hurd, C. (2018). Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Functional Ecology, 32, 1329–1342.
  • Oates, B. R. (1985). Photosynthesis and amelioration of desiccation in the intertidal saccate alga Colpomenia peregrina. Marine Biology, 89, 109–119.
  • Olivier, J. G. J., & Peters, J. A. H. W. (2019). Trends in global CO2 and total greenhouse gas emissions: 2019 report. PBL Netherlands Environmental Assessment Agency, The Hague.
  • Ortega, A., Geraldi, N. R., Alam, I., Kamau, A. A., Acinas, S. G., Logares, R., … Duarte, C. M. (2019). Important contribution of macroalgae to oceanic carbon sequestration. Nature Geoscience, 12, 748–754.
  • Pfister, C. A., Altabet, M. A., & Weigel, B. L. (2019). Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities. Ecology, 100, e02798.
  • Pickering, T. D., Gordon, M. E., & Tong, L. J. (1995). A preliminary trial of a spray culture technique for growing the agarophyte Gracilaria chilensis (Gracilariales, Rhodophyta). Aquaculture, 130, 43–49.
  • Raven, J. A. (2011). Praeger Review: Effects on marine algae of changed seawater chemistry with increasing atmospheric CO2. Biology and Environment, 111, 1–17.
  • Raven, JA. (2013). Half a century of pursuing the pervasive proton. Progress in Botany, 74, 3–34.
  • Raven, J A. (2017). The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. European Journal of Phycology, 52, 506–522.
  • Rossoll, D., Bermu´dez, R., Hauss, H., Schulz, K. G., Riebesell, U., Sommer, U., & Winder, M. (2012). Ocean acidification-induced food quality deterioration constrains trophic transfer. PloS One, 7, e34737.
  • Sondak, C. F. A., Ang, P. O., Jr., Beardall, J., Bellgrove, A., Boo, S. M., Gerung, G. S., … Chung, I. K. (2017). Carbon dioxide mitigation potential of seaweed aquaculture beds (SABS). Journal of Applied Phycology, 29, 2363–2373.
  • Trevathan-Tackett, S. M., Kelleway, J., Macreadie, P. I., Beardall, J., Ralph, P., & Bellgrove, A. (2015). Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology, 96, 3043–3057.
  • Viera, M. D. P., Courtois de Viçose, G., Fernández-Palacios, H., & Izquierdo, M. (2016). Grow-out culture of abalone Haliotis tuberculata coccinea Reeve, fed land-based IMTA produced macroalgae, in a combined fish/abalone offshore mariculture system: Effect of stocking density. Aquaculture Research, 47, 71–81.
  • Viera, M. P., de Vicose, G. C., Gómez-Pinchetti, J. L., Bilbao, A., Fernandez-Palacios, H., & Izquierdo, M. S. (2011). Comparative performances of juvenile abalone (Haliotis tuberculata coccinea Reeve) fed enriched vs non-enriched macroalgae: Effect on growth and body composition. Aquaculture, 319, 423–429.
  • Watanabe, M. M., & Tanabe, Y. (2013). Biology and industrial potential of Botryococcus braunii. In A. Richmond & Q. Hu (Eds.), Handbook of microalgal culture (pp. 369–387). Oxford: Wiley-Blackwell.
  • Xu, Y. J., Fang, J. G., & Wei, W. (2008). Application of Gracilaria lichenoides (Rhodophyta) for alleviating excess nutrients in aquaculture. Journal of Applied Phycology, 20, 199.
  • Yang, Y. F., Fei, X. G., Song, J. M., Hu, H. Y., Wang, G. C., & Chung, I. K. (2006). Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture, 254, 248–255.
  • Zhang, J. H., Fang, J. G., Wang, W., Du, M. R., Gao, Y. P., & Zhang, M. L. (2012). Growth and loss of mariculture kelp Saccharina japonica in Sungo Bay, China. Journal of Applied Phycology, 24, 1209–1216.
  • Zhou, W., He, L., Yang, F., Lin, A. P., Zhang, B. Y., Niu, J. F., & Wang, G. C. (2014). Pyropia yezoensis can utilize CO2 in the air during moderate dehydration. Chinese Journal of Oceanology and Limnology, 32, 358–364.
  • Zou, D. (2005). Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture, 250, 726–735.