1,677
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Bioactive peptide production and determination of functional properties using crude water extracts of Ulva lactuca (Chlorophyta) and Sargassum crassifolium (Phaeophyceae) collected from Sri Lanka

ORCID Icon, ORCID Icon & ORCID Icon
Pages 72-81 | Received 15 Jul 2021, Accepted 03 Apr 2022, Published online: 11 May 2022

References

  • Abeyrathne, E. D. N. S., Lee, H. Y., Jo, C., Nam, K. C., & Ahn, D. U. (2014). Enzymatic hydrolysis of ovalbumin and the functional properties of the hydrolysates. Poultry Science, 93, 2678–2686.
  • Admassu, H., Gasmalla, M. A. A., Yang, R., & Zhao, W. (2018). Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant, and anti-diabetic properties. Journal of Food Science, 83, 6–16.
  • Agyei, D., & Danquah, M. K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances, 29, 272–277.
  • Atta, E. M., Mohamed, N. H., & Silaev, A. A. M. A. (2017). Antioxidants: An overview on the natural and synthetic types. European Chemical Bulletin, 6, 365–375.
  • Bleakley, S., & Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6, 33.
  • Bondu, S., Bonnet, C., Gaubert, J., Deslandes, É., Turgeon, S. L., & Beaulieu, L. (2015). Bioassay-guided fractionation approach for determination of protein precursors of proteolytic bioactive metabolites from macroalgae. Journal of Applied Phycology, 27, 2059–2074.
  • Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118, 559–565.
  • Carter, P. (1971). Spectrophotometric determination of serum iron at the sub microgram level with a new reagent (ferrozine). Analytical Biochemistry, 40, 450–458.
  • Cian, R. E., Garzón, A. G., Ancona, D. B., Guerrero, L. C., & Drago, S. R. (2016). Chelating properties of peptides from red seaweed Pyropia columbina and its effect on iron bio-accessibility. Plant Foods for Human Nutrition, 71, 96–101.
  • Cian, R. E., Martínez-Augustin, O., & Drago, S. R. (2012). Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Research International, 49, 364–372.
  • Coppejans, E., Leliaert, F., Dargent, O., Gunasekara, R., & De Clerck, O. (2009). Sri Lankan seaweeds: Methodologies and field guide to the dominant species. Abc Taxa (Vol. 6). Brussels: Belgian Development Cooperation.
  • Cox, S., Turley, G. H., Rajauria, G., Abu-Ghannam, N., & Jaiswal, A. K. (2014). Antioxidant potential and antimicrobial efficacy of seaweed (Himanthalia elongata) extract in model food systems. Journal of Applied Phycology, 26, 1823–1831.
  • Dhaval, A., Yadav, N., & Purwar, S. (2016). Potential applications of food-derived bioactive peptides in management of health. International Journal of Peptide Research and Therapeutics, 22, 377–398.
  • Fernando, S. I. P., Sanjeewa, A. K. K., Samarakoon, K. W., Lee, W. W., Kim, H. S., Ranasinghe, P., … Jeon, Y. J. (2018). Antioxidant and anti-inflammatory functionality of ten Sri Lankan seaweed extracts obtained by carbohydrase assisted extraction. Food Science and Biotechnology, 27, 1761–1769.
  • Habeebullah, S. F. K., Alagarsamy, S., Sattari, Z., Al‐Haddad, S., Fakhraldeen, S., Al‐Ghunaim, A., & Al‐Yamani, F. (2021). Effect of enzymatic hydrolysis on the antioxidant activity of red and green seaweeds and characterization of the active extracts. Journal of the American Oil Chemists’ Society, 98, 185–200.
  • Harnedy, P. A., & FitzGerald, R. J. (2011). Bioactive proteins, peptides, and amino acids from macroalgae (1): Macroalgae: Bioactive agent source. Journal of Phycology, 47, 218–232.
  • Harnedy, P. A., & FitzGerald, R. J. (2013). In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. Journal of Applied Phycology, 25, 1793–1803.
  • Heo, S. J., Lee, G. W., Song, C. B., & Jeon, Y. J. (2003). Antioxidant activity of enzymatic extracts from brown seaweeds. Algae (Korean Phycological Society), 18, 71–81.
  • Joubert, Y., & Fleurence, J. (2008). Simultaneous extraction of proteins and DNA by an enzymatic treatment of the cell wall of Palmaria palmata (Rhodophyta). Journal of Applied Phycology, 20, 55–61.
  • Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16, 945–960.
  • Lafarga, T., Acién-Fernández, F. G., & Garcia-Vaquero, M. (2020). Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research, 48, 101909.
  • Lakmal, H. H. C., Samarakoon, K. W., Lee, W., Lee, J. H., Abeytunga, D. T. U., Lee, H. S., & Jeon, Y. J. (2014). Anticancer and antioxidant effects of selected Sri Lankan marine algae. Journal of the National Science Foundation of Sri Lanka, 42, 315.
  • Maldeniya, M. U. S., Egodauyana, K. P. U. T., & Abeyrathne, E. D. N. S. (2020a). Comparison of antioxidant properties of different crude extracts from Ulva lactuca. Sri Lanka Journal of Animal Production, 12, 11–21.
  • Maldeniya, M. U. S., Egodauyana, K. P. U. T., & Abeyrathne, E. D. N. S. (2020b). Extraction of crude protein from Sargassum crassifolium, harvested from south coast of Sri Lanka and determination of functional properties of the crude extracts. Journal of Technology and Value Addition, 2, 39–64.
  • Mills, S., Stanton, C., Hill, C., & Ross, R. P. (2011). New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology, 2, 299–329.
  • Ozuna, C., Paniagua-Martínez, I., Castaño-Tostado, E., Ozimek, L., & Amaya-Llano, S. L. (2015). Innovative applications of high-intensity ultrasound in the development of functional food ingredients: Production of protein hydrolysates and bioactive peptides. Food Research International, 77, 685–696.
  • Pangestuti, R., & Kim, S. K. (2015). Seaweed proteins, peptides, and amino acids. In Tiwari, B. K., & Troy, D. (Eds.), Seaweed sustainability: Food and non-food applications (pp. 125–140). Massachusetts, USA: Academic Press.
  • Park, P. J., Shahidi, F., & Jeon, Y. J. (2004). Antioxidant activities of enzymatic extracts from an edible seaweed Sargassum horneri using ESR spectrometry. Journal of Food Lipids, 11, 15–27.
  • PiSanjeewa, K. A., Jayawardena, T. U., Kim, H. S., Kim, S. Y., Fernando, I. S., Wang, L., … Jeon, Y. J. (2019). Fucoidan isolated from Padina commersonii inhibit LPS-induced inflammation in macrophages blocking TLR/NF-κB signal pathway. Carbohydrate Polymers, 224, 115195.
  • Premakumara, G. A., Ratnasooriya, W. D., & Tillekeratne, L. M. (1996). Isolation of a non-steroidal contragestative agent from Sri Lankan marine red alga, Gelidiella acerosa. Contraception, 54, 379–383.
  • Sambrook, J., & Russell, D. W. (2006). SDS-polyacrylamide gel electrophoresis of proteins. CSH Protoc, 2006, db–prot4540.
  • Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31, 1949–1956.
  • Sathya, R., MubarakAli, D., MohamedSaalis, J., & Kim, J. W. (2021). A systemic review on microalgal peptides: Bioprocess and sustainable applications. Sustainability, 13, 3262.
  • Stengel, D. B., Connan, S., & Popper, Z. A. (2011). Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances, 29, 483–501.
  • Sun, S., Xu, X., Sun, X., Zhang, X., Chen, X., & Xu, N. (2019). Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis. Marine Drugs, 17, 179.
  • Tavares, T. G., Contreras, M. M., Amorim, M., Martín-Álvarez, P. J., Pintado, M. E., Recio, I., & Malcata, F. X. (2011). Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. International Dairy Journal, 21, 926–933.
  • tePimentel, F. B., Alves, R. C., Harnedy, P. A., FitzGerald, R. J., & Oliveira, M. B. P. P. (2019). Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends in Food Science & Technology, 93, 106–124.
  • Thilanja, G. P. D. D. S., Dissanayake, K. S. M., Kariyawasam, M. G. T. R., & Abeyrathne, E. D. N. S. (2020). Extraction of crude collagen from yellowfin Tuna (Thunnus albacares) skin and determination of the functional properties of its hydrolysates. Journal of Technology and Value Addition Research, 2, 21–35.
  • Walters, M. E., Esfandi, R., & Tsopmo, A. (2018). Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods (Basel, Switzerland)), 7(10), 172.
  • Wang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggvidsson, G. O., Jónsson, J. Ó., Thorkelsson, G., & Ólafsdóttir, G. (2010). Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Science and Technology, 43, 1387–1393.
  • WHO. (2021), Noncommunicable diseases.World Health Organization. Retrieved June 5, 2021, from https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
  • Wijesekara, I., & Kim, S. K. (2010). Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Marine Drugs, 8, 1080–1093.
  • Zhang, X., Cao, D., Sun, X., Sun, S., & Xu, N. (2019). Preparation and identification of antioxidant peptides from protein hydrolysate of marine alga Gracilariopsis lemaneiformis. Journal of Applied Phycology, 31, 2585–2596.
  • Zhu, L., Glahn, R. P., Yeung, C. K., & Miller, D. D. (2006). Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4: Effects of ascorbic acid, pH, and a Fe (II) chelating agent. Journal of Agricultural and Food Chemistry, 54, 7924–7928.