3,398
Views
3
CrossRef citations to date
0
Altmetric
Special Issue for the United Nations Sustainable Development Goals

Estimating growth, loss and potential carbon sequestration of farmed kelp: a case study of Saccharina latissima at Strangford Lough, Northern Ireland

&
Pages 324-339 | Received 06 Oct 2021, Accepted 19 May 2022, Published online: 01 Aug 2022

References

  • Bach, L. T., Tamsitt, V., Gower, J., Hurd, C. L., Raven, J. A., & Boyd, P. W. (2021). Testing the climate intervention potential of ocean afforestation using the great Atlantic sargassum belt. Nature Communications, 12, 1–10. doi:10.1038/s41467-021-22837-2
  • Barbier, M., Charrier, B., Araujo, R., Holdt, S. L., Jacquemin, B., & Rebours, C. (2019). PEGASUS: phycomorph European guidelines for a sustainable seaweed aquaculture Michèle Barbier & Bénédicte Charrier. In Roscoff, France (Roscoff: COST Action FA1406) (pp. 1–194).
  • Becker, S., Tebben, J., Coffinet, S., Wiltshire, K., Iversen, M. H., Harder, T., … Hehemann, J.-H. (2020). Laminarin is a major molecule in the marine carbon cycle. PNAS, 117, 6599–6607. doi:10.1073/pnas.1917001117
  • Boyd, R. J. (1973) the relation of the plankton to the physical, chemical and biological features of Strangford Lough, Co. Down. Proceedings of the Royal Irish Academy, B Biol Geol Chem Sci, 73, 317–353.
  • Broch, O. J., & Slagstad, D. (2012). Modelling seasonal growth and composition of the kelp Saccharina latissima. Journal of Applied Phycology, 24, 759–776. doi:10.1007/s10811-011-9695-y
  • Broch, O. J., Hancke, K., & Ellingsen, I. H. (2022). Dispersal and deposition of detritus from kelp cultivation. Frontiers in Marine Science, 9, e840531. doi:10.3389/fmars.2022.840531
  • Buschmann, A. H., Camus, C., Infante, J., Neori, A., Á, I., Hernández-González, M. C., … Critchley, A. T. (2017). Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology, 52, 391–406. doi:10.1080/09670262.2017.1365175
  • Campbell, I., Macleod, A., Sahlmann, C., Neves, L., Funderud, J., Øverland, M., Stanley, M. (2019). The environmental risks associated with the development of seaweed farming in Europe - prioritizing key knowledge gaps. Front Mar Sci, 6, 1–22. doi:10.3389/fmars.2019.00107
  • Chung, I. K., Beardall, J., Mehta, S., Sahoo, D., & Stojkovic, S. (2011). Using marine macroalgae for carbon sequestration: A critical appraisal. Journal of Applied Phycology, 23, 877–886. doi:10.1007/s10811-010-9604-9
  • Chung, I. K., Sondak, C. F. A., & Beardall, J. (2017). The future of seaweed aquaculture in a rapidly changing world. European Journal of Phycology, 52, 495–505. doi:10.1080/09670262.2017.1359678
  • Collins, N., Mediboyina, M. K., Cerca, M., Vance, C., & Murphy, F. (2022). Economic and environmental sustainability analysis of seaweed farming: monetizing carbon offsets of a brown algae cultivation system in Ireland. Bioresource Technology, 346, e126637. doi:10.1016/j.biortech.2021.126637
  • Corrigan, S., Brown, A. R., Ashton, I. G. C., Smale, D. A., & Tyler, C. R. (2022). Quantifying habitat provisioning at macroalgal cultivation sites. Rev Aquac. doi:10.3389/fmars.2019.00107
  • de Bettignies, T., Wernberg, T., Lavery, P. S., Vanderklift, M. A., & Mohring, M. B. (2013). Contrasting mechanisms of dislodgement and erosion contribute to production of kelp detritus. Limnology and Oceanography, 58, 1680–1688. doi:10.4319/lo.2013.58.5.1680
  • Delille, B., Borges, A. V., & Delille, D. (2009). Influence of giant kelp beds (macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuarine, Coastal and Shelf Science, 81, 114–122. doi:10.1016/j.ecss.2008.10.004
  • Department of Agriculture Food and the Marine (2015) Terms of the afforestation grant and premium scheme 2014-2020, Ireland. assets.gov.ie/69781/6f6dc37d067d4e7a813605acadd6b77e.pdf, accessed 19 April 2022
  • Dierssen, H. M., Zimmerman, R. C., Drake, L. A., & Burdige, D. J. (2009). Potential export of unattached benthic macroalgae to the deep sea through wind-driven Langmuir circulation. Geophysical Research Letters, 36, 1–5. doi:10.1029/2008GL036188
  • Dolliver, J., & O’Connor, N. E. (2022). Whole system analysis is required to determine the fate of macroalgal carbon: A systematic review. Journal of Phycology. doi:10.1111/jpy.13251
  • Duarte, C. M., Wu, J., Xiao, X., Bruhn, A., & Krause-Jensen, D. (2017). Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? Front Mar Sci, 4, 1–8.
  • Duarte, C. M., Bruhn, A., & Krause-Jensen, D. (2022). A seaweed aquaculture imperative to meet global sustainability targets. Nat Sustain, 5, 185–193. doi:10.1038/s41893-021-00773-9
  • European Commission, Directorate-General for Agriculture and Rural Development, (2017). Evaluation study of the payment for agricultural practices beneficial for the climate and the environment : final report, Luxembourg: European Union. https:// data.europa.eu/doi/10.2762/71725
  • Fieler, R., Greenacre, M., Matsson, S., Neves, L., Forbord, S., & Hancke, K. (2021). Erosion dynamics of cultivated kelp, saccharina latissima, and implications for environmental management and carbon sequestration. Front Mar Sci, 8, 1–16. doi:10.3389/fmars.2021.632725
  • Filbee-Dexter, K., & Scheibling, R. E. (2012). Hurricane-mediated defoliation of kelp beds and pulsed delivery of kelp detritus to offshore sedimentary habitats. Marine Ecology Progress Series, 455, 51–64. doi:10.3354/meps09667
  • Filbee-Dexter, K., & Scheibling, R. E. (2016). Spatial patterns and predictors of drift algal subsidy in deep subtidal environments. Estuaries Coast, 39, 1724–1734. doi:10.1007/s12237-016-0101-5
  • Filbee-Dexter, K., Wernberg, T., Norderhaug, K. M., Ramirez-Llodra, E., & Pedersen, M. F. (2018). Movement of pulsed resource subsidies from kelp forests to deep fjords. Oecologia, 187, 291–304. doi:10.1007/s00442-018-4121-7
  • Food and Agriculture Organization of the United Nations. (2020). The state of world fisheries and aquaculture - sustainability in action. In Rome (Rome: Food and Agriculture Organization of the UnitedNations). 1–224.
  • Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C., Subke, J. A., & Wookey, P. A. (2020). Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Glob Change Biol, 26, 5178–5188. doi:10.1111/gcb.15229
  • Gallagher, J. B., Shelamoff, V., & Layton, C. (2022). Seaweed ecosystems may not mitigate CO2 emissions. ICES Journal of Marine Science, 79, 585–592. doi:10.1093/icesjms/fsac011
  • Gao, K., & Beardall, J. (2022). Using macroalgae to address UN Sustainable Development goals through CO2 remediation and improvement of the aquaculture environment. Appl Phycol., 1–8. doi:10.1080/26388081.2022.2025617
  • Gundersen, H., Christie, H., de Wit, H., Norderhaug, K. M., Bekkby, T., & Walday, M. (2010). CO2 uptake in marine habitats – An investigation. In Norway (Norway: Norsk institutt for vannforskning (NIVA)) (pp. 1–26).
  • Hatcher, B. G., Chapman, A. R. O., & Mann, K. H. (1977). An annual carbon budget for the kelp Laminaria Iongicruris. Mar. Biol, 44, 85–96. doi:10.1007/BF00386909
  • Herzog, H., Caldeira, K., & Reilly, J. (2003). An issue of permanence: Assessing the effectiveness of temporary carbon storage. Clim. Change, 59, 293–310. doi:10.1023/A:1024801618900
  • Hill, R., Bellgrove, A., Macreadie, P. I., Petrou, K., Beardall, J., Steven, A., & Ralph, P. J. (2015). Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr, 60, 1689–1706. doi:10.1002/lno.10128
  • Hurd, C. L., Law, C. S., Bach, L. T., Britton, D., Hovenden, M., Paine, E., … Boyd, P. W. (2022). Forensic carbon accounting: assessing the role of seaweeds for carbon sequestration. Journal of Phycology. doi:10.1111/jpy.13249
  • Jiang, Z., Fang, J., Mao, Y., Han, T., & Wang, G. (2013). Influence of Seaweed Aquaculture on marine inorganic carbon dynamics and sea-air CO 2 Flux. J World Aquac Soc, 44, 133–140. doi:10.1111/jwas.12000
  • Jiang, Z., Li, J., Qiao, X., Wang, G., Bian, D., Jiang, X., … Fang, J. (2015). The budget of dissolved inorganic carbon in the shellfish and seaweed integrated mariculture area of Sanggou Bay, Shandong, China. Aquac, 446, 167–174. doi:10.1016/j.aquaculture.2014.12.043
  • Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Azam, F. (2010). Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Reviews. Microbiology, 8, 593–599. doi:10.1038/nrmicro2386
  • Jiao, N., Liang, Y., Zhang, Y., Liu, J., Zhang, Y., Zhang, R., … Zhang, S. (2018). Carbon pools and fluxes in the China seas and adjacent oceans. Sci China Earth Sci, 61, 1535–1563.
  • Jones, D. C., Ito, T., Takano, Y., & Hsu, W. C. (2014). Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide. Global Biogeochemical Cycles, 28, 1163–1178. doi:10.1002/2014GB004813
  • Juanjuan, S., Jihong, Z., Jeffrey, R., & Fan, L. (2019). Organic carbon in the surface sediments from the intensive mariculture zone of Sanggou Bay: distribution, seasonal variations and sources. J Ocean Univ China, 18, 985–996. doi:10.1007/s11802-019-3768-y
  • Khailov, K. M., & Burlakova, Z. P. (1969). Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnol. Oceanogr, 14, 521–527. doi:10.4319/lo.1969.14.4.0521
  • Krause-Jensen, D., & Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9, 737–742. doi:10.1038/ngeo2790
  • Krumhansl, K. A., & Scheibling, R. E. (2011). Detrital production in Nova Scotian kelp beds: patterns and processes. Marine Ecology Progress Series, 421, 67–82. doi:10.3354/meps08905
  • Krumhansl, K. A., & Scheibling, R. E. (2012). Production and fate of kelp detritus. Marine Ecology Progress Series, 467, 281–302. doi:10.3354/meps09940
  • Krumhansl, K. A., J-S, L.-G., & Scheibling, R. E. (2014). Modeling effects of climate change and phase shifts on detrital production of a kelp bed. Ecol, 95, 763–774. doi:10.1890/13-0228.1
  • Lane, C. E., Mayes, C., Druehl, L. D., & Saunders, G. W. (2006). A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. Journal of Phycology, 42, 493–512. doi:10.1111/j.1529-8817.2006.00204.x
  • Li, H., Li, X., Li, Q., Liu, Y., Song, J., & Zhang, Y. (2017). Environmental response to long-term mariculture activities in the Weihai coastal area, China. The Science of the Total Environment. doi:10.1016/j.scitotenv.2017.05.167
  • Li, H., Zhang, Y., Liang, Y., Chen, J., Zhu, Y., Zhao, Y., & Jiao, N. (2018). Impacts of maricultural activities on characteristics of dissolved organic carbon and nutrients in a typical raft-culture area of the Yellow Sea, North China. Marine Pollution Bulletin, 137, 456–464. doi:10.1016/j.marpolbul.2018.10.048
  • Lin, T., Fan, W., Xiao, C., Yao, Z., Zhang, Z., Zhao, R., … Chen, Y. (2019). Energy management and operational planning of an ecological engineering for carbon sequestration in coastal mariculture environments in China. Sustainability, 11, 1–20.
  • Mann, K. H. (1972). Ecological energetics of the sea-weed zone in a marine bay on the Atlantic coast of Canada. II. Productivity of the Seaweeds. Mar Biol, 14, 199–209.
  • Mann, K. H. (1973). Seaweeds: their productivity and strategy for growth. Science, 182, 975–981. doi:10.1126/science.182.4116.975
  • Marland, G., Fruit, K., & Sedjo, R. (2001). Accounting for sequestered carbon: The question of permanence. Environmental Science & Policy, 4, 259–268. doi:10.1016/S1462-9011(01)00038-7
  • Mc Monagle, M., & Morrison, L. (2020). The seaweed resources of Ireland: A twenty-first century perspective. Journal of Applied Phycology, 32, 287–1300.
  • Mooney, K. M., Beatty, G. E., Elsäßer, B., Follis, E. S., Kregting, L., O’Connor, N. E., … Provan, J. (2018). Hierarchical structuring of genetic variation at differing geographic scales in the cultivated sugar kelp Saccharina latissima. Marine Environmental Research, 142, 108–115. doi:10.1016/j.marenvres.2018.09.029
  • Mooney-McAuley, K. M., Edwards, M. D., Champenois, J., & Gorman, E. (2016) Best Practice Guidelines for Seaweed Cultivation and Analysis, Public Output report of the enalgae project. Swansea. www.enalgae.eu, 19 April 2022
  • Msuya, F. E., Bolton, J., Pascal, F., Narrain, K., Nyonje, B., & Cottier-Cook, E. J. (2022). Seaweed farming in Africa: Current status and future potential. Journal of Applied Phycology, 34, 985–1005. doi:10.1007/s10811-021-02676-w
  • Muraoka, D. (2004). Seaweed resources as a source of carbon fixation. Bulletin of Japan Fisheries Research and Education Agency, (1):59–63.
  • Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009) Blue carbon: A rapid response assessment. pp 1–80
  • Oceans 2050 Foundation (2019) Seaweed Project - Oceans 2050. World-wide electronic publication. https://www.oceans2050.com/seaweed; accessed 19 April 2022
  • Olson, K. R., Al-Kaisi, M. M., Lal, R., & Lowery, B. (2014). Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates. Soil Science Society of America Journal. Soil Science Society of America, 78, 348–360. doi:10.2136/sssaj2013.09.0412
  • Osman-Elasha, B., Pipatti, R., Agyemang-Bonsu, W. K., Al-Ibrahim, A. M., Lopez, C., Marland, G., … Tailakov, O. (2005) Implications of carbon dioxide capture and storage for greenhouse gas inventories and accounting. In: B. Metz, O. Davidson, H. de Coninck, M. Loos, & L. Meyer (eds) IPCC Special Report on Carbon dioxide Capture and Storage. Cambridge University Press, Cambridge, pp 363–379.
  • Paine, E. R., Schmid, M., Boyd, P. W., Diaz-Pulido, G., & Hurd, C. L. (2021). Rate and fate of dissolved organic carbon release by seaweeds: A missing link in the coastal carbon cycle. Journal of Phycology, 57, 1375–1391. doi:10.1111/jpy.13198
  • Pan, Z., Gao, Q. F., Dong, S. L., Wang, F., Li, H. D., Zhao, K., & Jiang, X. Y. (2019). Effects of abalone (Haliotis discus hannai Ino) and kelp (Saccharina japonica) mariculture on sources, distribution, and preservation of sedimentary organic carbon in Ailian Bay, China: Identified by coupling stable isotopes (δ13C and δ15N). Marine Pollution Bulletin, 141, 387–397. doi:10.1016/j.marpolbul.2019.02.053
  • Pedersen, M. F., Filbee-Dexter, K., Norderhaug, K. M., Fredriksen, S., Frisk, N. L., Fagerli, C. W., & Wernberg, T. (2020). Detrital carbon production and export in high latitude kelp forests. Oecologia, 192, 227–239. doi:10.1007/s00442-019-04573-z
  • Pessarrodona, A., Moore, P. J., Sayer, M. D. J., & Smale, D. A. (2018). Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Glob Change Biol, 24, 4386–4398. doi:10.1111/gcb.14303
  • Peteiro, C., & Freire Ó (2013). Biomass yield and morphological features of the seaweed Saccharina latissima cultivated at two different sites in a coastal bay in the Atlantic coast of Spain. Journal of Applied Phycology, 25, 205–213. doi:10.1007/s10811-012-9854-9
  • Project, M. D. (2021). World-wide electronic publication. National Macroalgal Herbarium Portal Home, 19, 2022. accessed https://macroalgae.org/portal/index.php
  • Queirós, A. M., Stephens, N., Widdicombe, S., Tait, K., McCoy, S. J., Ingels, J., … Somerfield, P. J. (2019). Connected macroalgal-sediment systems: Blue carbon and food webs in the deep coastal ocean. Ecological Monographs, 89, 1–21. doi:10.1002/ecm.1366
  • Ren, L., Zhang, J., Fang, J., Tang, Q., Zhang, M., & Du, M. (2014). Impact of shellfish biodeposits and rotten seaweed on the sediments of Ailian Bay, China. Aquac Int, 22, 811–819. doi:10.1007/s10499-013-9709-7
  • Santos, I. R., Burdige, D. J., Jennerjahn, T. C., Bouillon, S., Cabral, A., Serrano, O., … Tamborski, J. J. (2021). The renaissance of Odum’s outwelling hypothesis in ‘Blue Carbon’ science. Estuarine, Coastal and Shelf Science, 255, e107361. doi:10.1016/j.ecss.2021.107361
  • Seghetta, M., Marchi, M., Thomsen, M., Bjerre, A. B., & Bastianoni, S. (2016). Modelling biogenic carbon flow in a macroalgal biorefinery system. Algal Res, 18, 144–155. doi:10.1016/j.algal.2016.05.030
  • Sharma, S., NeSves, L., Funderud, J., Mydland, L. T., Øverland, M., & Horn, S. J. (2018). seasonal and depth variations in the chemical composition of cultivated Saccharina latissima. Algal Res, 32, 107–112. doi:10.1016/j.algal.2018.03.012
  • Simonson, E. J., Scheibling, R. E., & Metaxas, A. (2015). Kelp in hot water: I. Warming Seawater Temperature Induces Weakening and Loss of Kelp Tissue. Mar Ecol Prog Ser, 537, 89–104.
  • Sjøtun, K. (1993) Seasonal lamina growth in two age groups of Laminaria saccharina (L.) lamour. in Western Norway. Botanica Marina 36:433–442.
  • Smale, D. A., Pessarrodona, A., King, N., Burrows, M. T., Yunnie, A., Vance, T., & Moore, P. (2020). Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic. Scientific Reports, 10, 1–12. doi:10.1038/s41598-020-69238-x
  • Sondak, C. F. A., & Chung, I. K. (2015). Potential blue carbon from coastal ecosystems in the Republic of Korea. Ocean Sci J, 50, 1–8. doi:10.1007/s12601-015-0001-9
  • Sondak, C. F. A., Ang, P., Beardall, J., Bellgrove, A., Min Boo, S., Gerung, G. S., … Chung, I. K. (2017). Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs). Journal of Applied Phycology, 29, 2363–2373. doi:10.1007/s10811-016-1022-1
  • The Aquaculture Advisory Council. (2021). Seaweed I - First General Recommendation. In Brussels (Brussels: Aquaculture Advisory Council (AAC)). 1–6.
  • Tang, Q., Zhang, J., & Fang, J. (2011). Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems. Marine Ecology Progress Series, 424, 97–104. doi:10.3354/meps08979
  • Trevathan-Tackett, S. M., Kelleway, J., Macreadie, P. I., Beardall, J., Ralph, P., & Bellgrove, A. (2015). Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecol, 96, 3043–3057. doi:10.1890/15-0149.1
  • Troell, M., Henriksson, P. J. G., Buschmann, A. H., Chopin, T., & Quahe, S. (2022) Farming the ocean - seaweeds as a quick fix for the climate? Rev Fish Sci Aquac. https://doi.org/10.1080/23308249.2022.2048792.
  • Turan, G., & Neori, A. (2007). Intensive seaweed aquaculture: A potent solution against global warming. In Eds., J. Seckbach, R. Einav, & A. Israel Seaweeds and their Role in Globally Changing Environments (pp. 357–372). doi:https://doi.org/10.1007/978-90-481-8569-6
  • Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumägi, M., & Lõhmus, K. (2012). Biomass production and carbon sequestration in a fertile silver birch (Betula pendula roth) forest chronosequence. For Ecol Manag, 267, 117–126. doi:10.1016/j.foreco.2011.11.033
  • van den Burg, S. W. K., van Duijn, A. P., Bartelings, H., van Krimpen, M. M., & Poelman, M. (2016). The economic feasibility of seaweed production in the North Sea. Aquac Econ Manag, 20, 235–252. doi:10.1080/13657305.2016.1177859
  • van der Molen, J., Ruardij, P., Mooney, K., Kerrison, P., O’Connor, N. E., Gorman, E., … Capuzzo, E. (2018). Modelling potential production of macroalgae farms in UK and Dutch coastal waters. Biogeosciences, 15, 1123–1147. doi:10.5194/bg-15-1123-2018
  • Visch, W., Kononets, M., Hall, P. O. J., Nylund, G. M., & Pavia, H. (2020). Environmental impact of kelp (Saccharina latissima) aquaculture. Marine Pollution Bulletin, 155, 1–12. doi:10.1016/j.marpolbul.2020.110962
  • Vondolia, G. K., Chen, W., Armstrong, C. W., & Norling, M. D. (2020). Bioeconomic modelling of coastal cod and kelp forest interactions: Co-benefits of habitat services, fisheries and carbon sinks. Environ Resour Econ, 75, 25–48. doi:10.1007/s10640-019-00387-y
  • Wada, S., Aoki, M. N., Tsuchiya, Y., Sato, T., Shinagawa, H., & Hama, T. (2007). Quantitative and qualitative analyses of dissolved organic matter released from Ecklonia cava Kjellman, in Oura Bay, Shimoda, Izu Peninsula, Japan. J Exp Mar Biol Ecol, 349, 344–358. doi:10.1016/j.jembe.2007.05.024
  • Wada, S., & Hama, T. (2013). The contribution of macroalgae to the coastal dissolved organic matter pool. Estuarine, Coastal and Shelf Science, 129, 77–85. doi:10.1016/j.ecss.2013.06.007
  • Walls, A. M., Kennedy, R., Edwards, M. D., & Johnson, M. P. (2017). Impact of kelp cultivation on the Ecological Status of benthic habitats and Zostera marina seagrass biomass. Marine Pollution Bulletin, 123, 19–27. doi:10.1016/j.marpolbul.2017.07.048
  • Wang, B., Cao, L., Micheli, F., Naylor, R., & Fringer, O. (2018). The effects of intensive aquaculture on nutrient residence time and transport in a coastal embayment. Environ Fluid Mech, 18, 1321–1349. doi:10.1007/s10652-018-9595-7
  • Watanabe, K., Yoshida, G., Hori, M., Umezawa, Y., Moki, H., & Kuwae, T. (2020). Macroalgal metabolism and lateral carbon flows can create significant carbon sinks. Biogeosciences, 17, 2425–2440. doi:10.5194/bg-17-2425-2020
  • Weigel, B. L., & Pfister, C. A. (2020). The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecol, 102, e03221.
  • Wood, D., Capuzzo, E., Kirby, D., Mooney-McAuley, K., & Kerrison, P. (2017). UK macroalgae aquaculture: What are the key environmental and licensing considerations? Mar. Policy, 83, 29–39.
  • Xu, N., Wang, W., Xu, Y., Ji, D., Chen, C., & Bell, T. W. (2021). Effects of nutrient availability on the release of dissolved and particulate organic carbon by Pyropia haitanensis and its implications. Front Mar Sci, 8, 1–10. doi:10.3389/fmars.2021.696938
  • Yoshikawa, T., Takeuchi, I., & Furuya, K. (2001). Active erosion of Undaria pinnatifida suringar (Laminariales, Phaeophyceae) mass-cultured in Otsuchi Bay in northeastern Japan. J Exp Mar Biol Ecol, 266, 51–65. doi:10.1016/S0022-0981(01)00346-X
  • Zhang, J., Fang, J., Wang, W., Du, M., Gao, Y., & Zhang, M. (2012). Growth and loss of mariculture kelp Saccharina japonica. Journal of Applied Phycology, 24, 1209–1216. doi:10.1007/s10811-011-9762-4
  • Zhang, Y., Zhao, M. X., Cui, Q., Fan, W., Qi, J. G., Chen, Y., … Jiao, N. Z. (2017). Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink. Sci China Earth Sci, 60, 809–820. doi:10.1007/s11430-016-9010-9