2,123
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Growth comparison of Arthrospira platensis in different vessels: standard cylinder vs. enhanced surface area at low light

, , &
Pages 1-14 | Received 14 Mar 2022, Accepted 09 Sep 2022, Published online: 13 Jan 2023

References

  • Adeniyi, O. M., Azimov, U., & Burluka, A. (2018). Algae Biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews, 90, 316–335. doi:https://doi.org/10.1016/j.rser.2018.03.067
  • Aro, E.-M., Ivar, V., & Andersson, B. (1993). Photoinhibition of photosystem ii: Inactivation, protein damage and turnover. Biochimica Et Biophysica Acta (BBA) – Bioenergetics, 1143, 113–134. doi:https://doi.org/10.1016/0005-2728(93)90134-2
  • Arora, K., Kumar, P., Bose, D., Li, X., & Kulshrestha, S. (2021). Potential applications of algae in biochemical and bioenergy sector. 3 Biotech, 11, 1–24. doi:10.1007/s13205-021-02825-5
  • Azizi, M., Golmohammadi, R., & Aliabadi, M. (2016). Comparative analysis of lighting characteristics and ultraviolet emissions from commercial compact fluorescent and incandescent lamps. Journal of Research in the Health Sciences, 16, 200–205. https://pubmed.ncbi.nlm.nih.gov/28087852
  • Barber, D. J. W., & Richards, J. T. (1977). Energy Transfer in the Accessory Pigments R-Phycoerythrin and C-Phycocyanin. Photochemistry and Photobiology, 25, 565–569. doi:10.1111/j.1751-1097.1977.tb09129.x
  • Benemann, J. R. (1979). Production of nitrogen fertilizer with nitrogen-fixing blue - green algae. Enzyme and Microbial Technology, 1, 83–90. doi:https://doi.org/10.1016/0141-0229(79)90103-0
  • Chainapong, T., Traichaiyaporn, S., & Deming, R. L. (2012). Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of Spirulina platensis. Journal of Agricultural Technology, 8, 1593–1604.
  • Chong, J. W. R., Khoo, K. S., Yew, G. Y., Leong, W. H., Lim, J. W., Lam, M. K. … Show, P. L. (2021). Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. Bioresource Technology, 342, 125947. doi:10.1016/j.biortech.2021.125947
  • Christaki, E., Karatzia, M., & Florou-Paneri, P. (2010). The use of algae in animal nutrition. Journal of the Hellenic Veterinary Medical Society, 61, 267–276. doi:10.12681/jhvms.14894
  • Clippinger, J., & Davis, R. (2019). Techno-Economic analysis for the production of algal biomass via closed photobioreactors: future cost potential evaluated across a range of cultivation system designs. National Renewable Energy Laboratory, Golden, CO. NREL/TP-5100–72716. https://www.nrel.gov/docs/fy19osti/7271.
  • Converti, A., Lodi, A., Del Borghi, A., & Solisio, C. (2006). Cultivation of spirulina platensis in a combined airlift-tubular reactor system. Biochemical Engineering Journal, 32, 13–18. doi:https://doi.org/10.1016/j.bej.2006.08.013
  • Corder, G. W., & Foreman, D. I. (2014). Nonparametric Statistics: A Step-by-Step Approach (Vol. 4, 2nd ed., pp. 69–75). Hoboken, NJ, USA: John Wiley & Sons, Inc.
  • da Costa Menestrino, B., Sala, L., Costa, J. A. V., Buffon, J. G., & Santos, L. O. (2021). Magnetic Fields Exhibit a Positive Impact on Lipid and Biomass Yield During Phototrophic Cultivation of Spirulina Sp. Bioprocess and Biosystems Engineering, 44, 2087–97. doi:10.1007/s00449-021-02585-9
  • da Silva, M. F., Casazza, A. A., Ferrari, P. F., Perego, P., Bezerra, R. P., Converti, A., & Porto, A. L. F. (2016). A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions. Bioresources Technology, 207, 220–228.
  • Deamici, K. M., Costa, J. A. V., & Santos, L. O. (2016). Magnetic fields as triggers of microalga growth: Evaluation of its effect on Spirulina sp. Bioresources Technology, 220, 62–67. doi:10.1016/j.biortech.2016.08.038
  • Demoulin, C. F., Lara, Y. J., Cornet, L., François, C., Baurain, D., Wilmotte, A., & Javaux, E. J. (2019). Cyanobacteria evolution: insight from the fossil record. Free radical biology & medicine, 140, 206–223. doi:10.1016/j.freeradbiomed.2019.05.007
  • Fernie, A. R., & Bauwe, H. (2020). Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. The Plant Journal, 102, 666–677. doi:https://doi.org/10.1111/tpj.14669
  • Frontasyeva, M. V., Pavlov, S. S., Mosulishvili, L., Kirkesali, E., Ginturi, E., & Kuchava, N. (2009). Accumulation of trace elements by biological matrix of Spirulina platensis. The Journal of the Society of Ecological Chemistry and Engineering, 16, 277–285.
  • Frumento, D., Casazza, A. A., Al Arni, S., & Converti, A. (2013). Cultivation of Chlorella vulgaris in Tubular Photobioreactors: A Lipid Source for Biodiesel Production. Biochemical engineering journal, 81, 120–25. doi:10.1016/j.bej.2013.10.011
  • Ganesh, A. B., Manoharan, P. T., & Suraishkumar, G. K. (2007). Responses of the photosynthetic machinery of Spirulina maxima to induced reactive oxygen species. Biotechnology and Bioengineering, 96, 1191–1198. doi:https://doi.org/10.1002/bit.21217
  • González-Camejo, J., Viruela, A., Ruano, M. V., Barat, R., Seco, A., & Ferrer, J. (2019). Dataset to assess the shadow effect of an outdoor microalgae culture. Data in Brief, 25, 104143. doi:10.1016/j.dib.2019.104143
  • Hoseini, S. M., Almodares, A., Afsharzadeh, S., Shahriari, A. R., & Montazeri, F. (2014). Growth response of Spirulina platensis PCC9108 to elevated CO2 levels and flue gas. Biological Journal of Microorganism, 2, 29–36. University of Isfahan, Iran https://www.sid.ir/en/journal/ViewPaper.aspx?id=491905
  • Ismaiel, M. M. S., El-Ayouty, Y. M., & Piercey-Normore, M. (2016). Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Brazilian Journal of Microbiology, 47, 298–304. doi:10.1016/j.bjm.2016.01.003
  • Joshi, S. (2018). Applications of Algae in Cosmetics: An Overview. International Journal of Innovative Research in Science, Engineering and Technology, 7, 1269–1278.
  • Kazbar, A., Cogne, G., Urbain, B., Marec, H., Le-Gouic, B., Tallec, J. … Pruvost, J. (2019). Effect of dissolved oxygen concentration on microalgal culture in photobioreactors. Algal Research, 39, 101432. doi:10.1016/j.algal.2019.101432
  • Kendirlioglu, G., & Cetin, A. K. (2017). Effect of different wavelengths of light on growth, pigment content, and protein amount on Chlorella vulgaris. Fresenius Environmental Bulletin, 26, 7974–7980.
  • Kitaya, Y., Azuma, H., & Kiyota, M. (2005). Effects of Temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Advances in Space Research, 35, 1584–1588. doi:https://doi.org/10.1016/j.asr.2005.03.039
  • Kronick, M. N. (1986). The Use of Phycobiliproteins as Fluorescent Labels in Immunoassay. Journal of immunological methods, 92, 1–13. doi:10.1016/0022-1759(86)90496-5
  • Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 102, 4945–4953. doi:https://doi.org/10.1016/j.biortech.2011.01.054
  • Li, Z.-Y., Guo, S.-Y., Li, L., & Cai, M.-Y. (2007). Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresource Technology, 98, 700–705. doi:10.1016/j.biortech.2006.01.024
  • Lima, G. M., Teixeira, P. C. N., Teixeira, C. M. L. L., Filócomo, D., & Lage, C. L. S. (2018). Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Research, 31, 157–166. doi:https://doi.org/10.1016/j.algal.2018.02.012
  • Liu, J., Pemberton, B., Lewis, J., Scales, P., & Martin, G. J. O. (2020). Wastewater treatment using filamentous algae – a review. Bioresource Technology, 298, 122556. doi:https://doi.org/10.1016/j.biortech.2019.122556
  • Nicolás-Martín, C., Santos-Martín, D., Chinchilla-Sánchez, M., & Lemon, S. (2020). A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data. Renewable Energy, 161, 722–735. doi:10.1016/j.renene.2020.07.098
  • Nishiyama, Y., Allakhverdiev, S. I., Yamamoto, H., Hayashi, H., & Murata, N. (2004). Singlet oxygen inhibits the repair of photosystem ii by suppressing the translation elongation of the D1 Protein in Synechocystis sp. PCC 6803. Biochemistry-US, 43, 11321–11330. doi:10.1021/bi036178q
  • Nomsawai, P., de Marsac, N. T., Thomas, J. C., Tanticharoen, M., & Cheevadhanarak, S. (1999). Light regulation of phycobilisome structure and gene expression in Spirulina platensis C1 (Arthrospira sp. PCC 9438). Plant & Cell Physiology, 40, 1194–1202. doi:10.1093/oxfordjournals.pcp.a029507
  • Olaizola, M., & Duerr, E. O. (1990). Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis. Journal of Applied Phycology, 2, 97–104. doi:10.1007/BF00023370
  • Oliveira, M. A. C. L. D., Monteiro, M., Robbs, P. G., & Leite, S. G. F. (1999). Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International, 7, 261–275. doi:https://doi.org/10.1023/A:1009233230706
  • Poonam, S., & Sharma, N. (2017). Industrial and biotechnological applications of algae: A review. Journal of Advances in Plant Biology, 1, 01–25. doi:https://doi.org/10.14302/issn.2638-4469.japb-17-1534
  • Prates, D. D., Radmann, E. M., Duarte, J. H., de Morais, M. G., & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256, 38–43. doi:10.1016/j.biortech.2018.01.122
  • Priyadarshani, I., & Biswajit, R. (2012). Commercial and industrial applications of micro algae–a review. Journal of Algal Biomass Utilization, 3, 89–100.
  • Rasala, B. A., & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 123, 227–239. doi:10.1007/s11120-014-9994-7
  • Rizzo, R.F., Santos, B.D., Castro, G.F., Passos, T.S., Nascimento, M.D., Guerra, H.D. … Lima-Araújo, K.G. (2015). Production of Phycobiliproteins by Arthrospira platensis under different light conditions for application in food products. Food Science and Technology -Brazil, 35, 247–252. doi:10.1590/1678-457x.6463
  • Sforza, E., Pastore, M., Franke, S. M., & Barbera, E. (2020). Modeling the Oxygen Inhibition in Microalgae: An Experimental Approach Based on Photorespirometry. New biotechnology, 59, 26–32. doi:10.1016/j.nbt.2020.06.003
  • Shahi, K. A., Behnaz, E. K., Dehghanian, Z., Pandey, B., Lajayer, A., Price, G. W., & Astatkie, T. (2022). Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environmental Science and Pollution Research. 06/2022 online. doi: 10.1007/s11356-022-21283-x
  • Sheehan, J., Dunahay, T. G., Benemann, J. R., Roessler, P. G., & Weissman, J. C. (1998). A Look back at the U.S. department of energy’s aquatic species program—biodiesel from algae. National Renewable Energy Laboratory, Golden, CO, US Department of Energy, Close-out Report. https://www.nrel.gov/docs/legosti/fy98/24190.pdf
  • Shigesada, N., & Okubo, A. (1981). Analysis of the self-shading effect on algal vertical distribution in natural waters. Journal of Mathematical Biology, 12, 311–326. doi:10.1007/BF00276919
  • Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – from growth to nutritional product: A review. Trends Food Science & Technology, 69, 157–171. doi:10.1016/j.tifs.2017.09.010
  • Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture medium. Energy Reports, 5, 327–336. doi:10.1016/j.egyr.2019.02.009
  • Srinivasan, T., & Illanjiam, S. (2021a). Extraction and purification of phycocyanin and their radical- scavenging activity from multi - stress spirulina isolated from marine water. Applied Ecological and Environmental Sciences, 9, 73–75.
  • Srinivasan, T., & Illanjiam, S. (2021b). Optimization studies of multistress spirulina isolated from marine water. Applied Ecological and Environmental Sciences, 9, 76–78.
  • Stanley, J. G., & Jones, J. B. (1976). Feeding Algae to Fish. Aquaculture, 7, 219–23. doi:10.1016/0044-8486(76)90140-X
  • Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285, 146–158. doi:10.1016/j.aquaculture.2008.08.015
  • Tayebati, H., Shariati, F. P., Soltani, N., & Tehrani, H. S. (2020). The effect of different light variables on spirulina growth and its component. Iranian International Conference. Chemical Engineering Congress, Exhibition 11. https://www.researchgate.net/profile/HaniehTayebati/publication/345775863
  • Thaweedet, C., Traichaiyaporn, S., & Deming, R. L. (2012). Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of Spirulina platensis. Journal of Agricultural Technology, 8, 1593–1604.
  • Torzillo, G., & Vonshak, A. (2013). Environmental Stress Physiology with Reference to Mass Cultures. Handbook of microalgal culture: applied phycology and biotechnology (pp. 901–13). New Jersey, USA: Blackwell Publishing Ltd. doi:10.1002/9781118567166.ch6
  • Uslu, L. H., Oya, I., Sayin, S., Durmaz, Y., Göksan, T., & Gökpinar, Ş. (2009). The effect of temperature on protein and amino acid composition of Spirulina platensis. Journal of Fisheries and Aquatic Sciences, 26, 139–142.
  • Vonshak, A., Torzillo, G., Accolla, P., & Tomaselli, L. (1996). Light and oxygen stress in Spirulina platensis (cyanobacteria) grown outdoors in tubular reactors. Physiologia Plantarum, 97, 175–179. doi:10.1111/j.1399-3054.1996.tb00494.x
  • Wang, C. Y., Fu, C.-C., & Liu, Y.-C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37, 21–25. doi:10.1016/j.bej.2007.03.004
  • Warman, P. R., & Mayhew, W. J. (1979). Effect of reflective surfaces on a greenhouse lettuce crop. Canada. https://www.osti.gov/etdeweb/biblio/8487983
  • Webber, A. N., & Lubitz, W. (2001). P700: The primary electron donor of photosystem I. Biochimica Et Biophysica Acta, 1507, 61–79. doi:10.1016/S0005-2728(01)00198-0