1,355
Views
6
CrossRef citations to date
0
Altmetric
Article

Impacts of Cu and sulfadiazine on soil potential nitrification and diversity of ammonia-oxidizing archaea and bacteria

, , , , , & show all
Pages 60-69 | Received 11 Oct 2018, Accepted 06 Dec 2018, Published online: 06 May 2019

References

  • Wu LH, Pan X, Chen LK, et al.Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in east China. Environ Sci Pollut Res. 2013;20:8342–8354.
  • An J, Chen HW, Wei SH, et al. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China. Environ Earth Sci. 2015;74:5077–5086.
  • Meng W, Wang Z, Hu B, et al. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: a case study assessment. Agric Water Manage. 2016;171:153–161.
  • Kaçar A, Koçyiğit A. Characterization of heavy metal and antibiotic resistant bacteria isolated from aliaga ship dismantling zone, eastern aegean sea, Turkey. Int J Environ Agric Res. 2013;7:895–902.
  • Kong WD, Zhu YG, Fu BJ, et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut. 2006;143:129–137.
  • Hu W, Zhang Y, Huang B, et al. Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere. 2017;170:183–195.
  • Osma E, Serin M, Leblebici Z, et al. Heavy metals accumulation in some vegetables and soils in istanbul. Ekoloji. 2012;21:1–8.
  • Huan HE, Shen TL, Dai JL, et al. The response of potential nitrification rate in fluvo-aquic soil to heavy metals Zn2+ and Cd2+. J Agro-Environ Sci. 2010;29:918–922.
  • Hou L, Yin G, Liu M, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ Sci Technol. 2015;49:326–333.
  • Kotzerke A, Sharma S, Schauss K, et al. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut. 2008;153:315–322.
  • Wang Y, Wang X, Yang Y, et al. Influence of Cd Amendment on potential nitrification rate in suburban soil of Beijing. Asian J Ecotoxicol. 2014;9:367–374.
  • Kene G, Ernst W, Stevep MG. Heavy metals and soil microbes. Soil Biol Biochem. 2009;41:2031–2037.
  • Liu A, Fang D, Wang C, et al. Primary research on the recovery of soil nitrification and its key factors under the Cu stress. Ecol Environ Sci. 2014;23:1986–1990.
  • Babich H, Stotzky G, Ehrlich HL. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. CRC Crit Rev Microbiol. 1980;8:99–145.
  • Kucharski J, Wyrwał A, Boros E, et al. Nitrification process as an indicator of soil contamination with heavy metals. Inorganica Chim Acta. 2009;45:L107–L108.
  • Toth JD, Feng Y, Dou Z. Veterinary antibiotics at environmentally relevant concentrations inhibit soil iron reduction and nitrification. Soil Biol Biochem. 2011;43:2470–2472.
  • Srivastava PK, Vaish A, Dwivedi S, et al. Biological removal of arsenic pollution by soil fungi. SciTotal Environ. 2011;409:2430–2442.
  • Stone D, Ritz K, Griffiths BG, et al. Selection of biological indicators appropriate for European soil monitoring. Appl Soil Ecol. 2016;97:12–22.
  • Wessén E, Hallin S. Abundance of archaeal and bacterial ammonia oxidizers–possible bioindicator for soil monitoring. Ecol Indic. 2011;11:1696–1698.
  • Feld L, Hjelmsø MH, Nielsen MS, et al. Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes. Plos One. 2015;10:e126080.
  • Saito A, Ikeda S, Ezura H, et al. Microbial community analysis of the phytosphere using culture-independent methodologies. Microbes Environ. 2007;22:93–105.
  • Woojim S, Joonhong P, Quensen JFI, et al. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol. 2009;75:5501.
  • Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol. 2001;55:485.
  • Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806.
  • Wuchter C, Abbas B, Coolen MJ, et al. Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A. 2006;103:12317–12322.
  • Rusk JA, Hamon RE, Stevens DP, et al. Adaptation of soil biological nitrification to heavy metals. Environ Sci Technol. 2004;38:3092–3097.
  • Xu Y, Yu W, Ma Q, et al. Responses of bacterial and archaeal ammonia oxidisers of an acidic luvisols soil to different nitrogen fertilization rates after 9 years. Biol Fertil Soils. 2012;48:827–837.
  • Wang J, Zhang L, Lu Q, et al. Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes. Appl Soil Ecol. 2014;84:38–44.
  • Liu H, Li J, Zhao Y, et al. Ammonia oxidizers and nitrite-oxidizing bacteria respond differently to long-term manure application in four paddy soils of south of China. SciTotal Environ. 2018;633:641–648.
  • Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537.
  • Huang L, Dong H, Wang S, et al. Diversity and abundance of ammonia-oxidizing archaea and bacteria in diverse Chinese paddy soils. Geomicrobiol J. 2014;31:12–22.
  • Hu X, Zhang Y, Luo J, et al. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ Pollut. 2011;159:1215–1221.
  • Aixia Z, Su X, Gao S, et al. Determination of four sulfa antibiotics in groundwater, soil and excreta samples using high performance liquid chromatography. Chin J Anal Chem. 2014;42:397–402.
  • Sun JW, Huang YZ, Zhao LJ, et al. Effects of copper on nitrification rates in 17 kinds of typical soils in China. Asian J Ecotoxicol. 2008;3:513–520.
  • Kapoor V, Li X, Elk M, et al. Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria. Environ Sci Technol. 2015;49:13454.
  • Banerjee S, D Angelo E. Livestock antibiotic effects on nitrification, denitrification, and microbial community composition in soils. Open J Soil Sci. 2013;03:203–212.
  • Guo B, Yao LX, Liu ZZ, et al. Effects of sulfonamide veterinary drugs on soil biochemical function and nitrogen. Soils. 2012;44:596–600.
  • Louvet JN, Giammarino C, Potier O, et al. Adverse effects of erythromycin on the structure and chemistry of activated sludge. Environ Pollut. 2010;158:688–693.
  • Alighardashi A, Pandolfi D, Potier O, et al. Acute sensitivity of activated sludge bacteria to erythromycin. J Hazard Mater. 2009;172:685–692.
  • Zhou ZF, Liu YR, Sun GX, et al. Responses of soil ammonia oxidizers to a short-term severe mercury stress. J Environ Sci. 2015;38:8–13.
  • Liu A, Cao H, Yang Y, et al. Combinational effects of sulfomethoxazole and copper on soil microbial community and function. Environ Sci Pollut Res. 2016;23:4235–4241.
  • Song Y, Swedlund PJ, Singhal N, et al. Cadmium(II) speciation in complex aquatic systems: a study with ferrihydrite, bacteria, and an organic ligand. Environ Sci Technol. 2009;43:7430–7436.
  • Ganguly S, Jana BB. Cadmium induced adaptive responses of certain biogeochemical cycling bacteria in an aquatic system. Water Res. 2002;36:1667–1676.
  • He H, Liu H, Shen T, et al. Influence of Cu application on ammonia oxidizers in fluvo-aquic soil. Geofis Int. 2018;321:141–150.
  • Ollivier J, Wanat N, Austruy A, et al. Abundance and diversity of ammonia-oxidizing prokaryotes in the root–rhizosphere complex of miscanthus × giganteus grown in heavy metal-contaminated soils. Microb Ecol. 2012;64:1038–1046.
  • Li XF, Zhu YG, Cavagnaro TR, et al. Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria? Plant Soil. 2009;324:209–217.
  • Kandler O, König H. Cell wall polymers in archaea (archaebacteria). Cell Mol Life Sci. 1998;54:305–308.
  • Zhang HY, Zhai HY, Ji M, et al. Long-term effect of Cr(VI) on ammonia-oxidizing and nitrite-oxidizing bacteria in an activated sludge system. Desalin Water Treat. 2015;54:1981–1989.
  • Sun J, Qian X, Gu J, et al. Effects of oxytetracycline on the abundance and community structure of nitrogen-fixing bacteria during cattle manure composting. Bioresour Technol. 2016;216:801–807.
  • Hammesfahr U, Heuer H, Manzke B, et al. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem. 2008;40:1583–1591.
  • Hilpert R, Winter J, Hammes W, et al. The sensitivity of archaebacteria to antibiotics. Zentralblatt Für Bakteriologie Und Hygiene Reihe C. 1981;2:11–20.
  • Gonzalezmartinez A, Margareto A, Rodriguezsanchez A, et al. Linking the effect of antibiotics on partial-nitritation biofilters: performance, microbial communities and microbial activities. Front Microbiol. 2018;9:354.
  • Zhou ZF, Wang MX, Liu WL, et al. A comparative study of ammonia-oxidizing archaea and bacteria in acidic and alkaline purple soils. Ann Microbiol. 2016;66:615–623.
  • Li H, Weng BS, Huang FY, et al. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China. Appl Microbiol Biotechnol. 2015;99:6113–6123.
  • Oliveira A, Pampulha ME. Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng. 2006;102:157–161.
  • Guo T, Lou C, Zhai W, et al. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. SciTotal Environ. 2018;635:995–1003.