1,822
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Arsenic in permafrost-affected rivers and lakes of Tibetan Plateau, China

, , , , , , & show all
Pages 226-232 | Received 24 Feb 2019, Accepted 26 Apr 2019, Published online: 15 Jun 2019

References

  • Vonk JE, Tank SE, Bowden WB, et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences. 2015;12(23):7129–7167.
  • Schuur EAG, Vogel JG, Crummer KG, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature. 2009;459(7246):556–559.
  • Schuster PF, Schaefer KM, Aiken GR, et al. Permafrost stores a globally significant amount of mercury. Geophys Res Lett. 2018;45(3):1463–1471.
  • Romanovsky VE, Drozdov DS, Oberman NG, et al. Thermal state of permafrost in Russia. Permafrost Periglacial Processes. 2010;21(2):136–155.
  • Krainer K, Bressan D, Dietre B, et al. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quat Res. 2017;83(2):324–335.
  • Williams MW, Knauf M, Caine N, et al. Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafrost Periglacial Processes. 2006;17(1):13–33.
  • O’Donnell JA, Jorgenson MT, Harden JW, et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan Peatland. Ecosystems. 2012;15(2):213–229.
  • Jin HJ, He R, Cheng G, et al. Changes in frozen ground in the source area of the yellow river on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett. 2009;4(4):045206.
  • He J, Charlet L. A review of arsenic presence in China drinking water. J Hydrol. 2013;492:79–88.
  • Huang L, Wu H, van der Kuijp TJ. The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. Int J Environ Health Res. 2015;25(4):432–452.
  • Xie Z, Sun Z, Zhang H, et al. Contamination assessment of arsenic and heavy metals in a typical abandoned estuary wetland-a case study of the yellow river delta natural reserve. Environ Monit Assess. 2014;186(11):7211–7232.
  • Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta. 2002;58(1):201–235.
  • Hossain MF. Arsenic contamination in Bangladesh - an overview. Agric Ecosyst Environ. 2006;113(1–4):1–16.
  • Thakur JK, Thakur RK, Ramanathan AL, et al. Arsenic contamination of groundwater in Nepal-an overview. Water. 2011;3(1):1–20.
  • Zhang Y, Sillanpää M, Li C, et al. River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environ Earth Sci. 2015;73(8):4151–4163.
  • Tian L, Li Y, Yao T. Preliminary study on the arsenic concentration in surface water on the Tibetan Plateau. J Glaciol Geocryology. 2002;24(1):98–101.
  • Li C, Kang S, Chen P, et al. Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environ Earth Sci. 2014;71(9):4143–4148.
  • Luo D, HuiJun J, Marchenko S, et al. Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. Sci China-Earth Sci. 2014;57(8):1834–1845.
  • Hu G, Jin H, Dong Z, et al. Driving forces of aeolian desertification in the source region of the Yellow River: 1975–2005. Environ Earth Sci. 2013;70(7):3245–3254.
  • Wilkie JA, Hering JG. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ Sci Technol. 1998;32(5):657–662.
  • Pettine M, Mastroianni D, Camusso M, et al. Distribution of As, Cr and V species in the Po-Adriatic mixing area, (Italy). Mar Chem. 1997;58(3–4):335–349.
  • Masson M, Schäfer J, Blanc G, et al. Seasonal variations and annual fluxes of arsenic in the Garonne, Dordogne and Isle Rivers, France. SciTotal Environ. 2007;373(1):196–207.
  • Michel Pierre AB, Joelle N, Jane S. Evaluation of dissolved and particulate arsenic flux in the Dover strait (fluxmanche program). Oceanolog Acta. 1993;16(5–6):585–591.
  • Jigyasu DK, Kuvar R, Singh S, et al. Seasonal variations and flux of arsenic in Gomati River, Ganga Alluvial Plain, Northern India. In: Raju NJ, Gossel W, Ramanathan AL, et al., editors, Management of water, energy and bio-resources in the era of climate change: emerging issues and challenges. Cham: Springer International Publishing; 2015. p. 85–96.
  • De Gieter M, Elskens M, Baeyens W. Fluxes and major transport routes of arsenic in the scheldt estuary. Mar Chem. 2005;95(1–2):15–30.
  • Michel P, Chiffoleau JF, Averty B, et al. High resolution profiles for arsenic in the seine estuary. seasonal variations and net fluxes to the English channel. Cont Shelf Res. 1999;19(15–16):2041–2061.
  • Singh R, Singh S, Parihar P, et al. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol Environ Saf. 2015;112:247–270.
  • Ferguson JF, Gavis J. A review of the arsenic cycle in natural waters. Water Res. 1972;6(11):1259–1274.
  • Maest AS, Pasilis SP, Miler LG, et al. Redox geochemistry of arsenic and iron in Mono Lake, California, USA. In: Kharaka YK, Maest AS, editors. Water-rock interaction, Vols 1 and 2: vol 1: low Temperature Environments; Vol 2: moderate and high temperate environments. Rotterdam, Netherlands: AA Balkema; 1992p. 507–511.
  • Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002;17(5):517–568.
  • Yu C, Sun Y, Yu Z, et al. Arsenic release mechanism with seasonal permafrost freeze-thaw process. J Contam Hydrol. Submitted.
  • Li S, Wang M, Yang Q, et al. Enrichment of arsenic in surface water, stream sediments and soils in Tibet. J Geochem Explor. 2013;135:104–116.
  • Rowland Helen AL, Omoregie EO, Millot R, et al. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl Geochem. 2011;26:1–17.
  • Mandal SK, Dey M, Ganguly D, et al. Biogeochemical controls of arsenic occurrence and mobility in the Indian Sundarban mangrove ecosystem. Mar Pollut Bull. 2009;58(5):652–657.
  • Matsuoka N, Ikeda A, Sueyoshi T, et al. Permafrost and hydrology in the source area of the Yellow River. Bull Geol Surv Jpn. 2009;60(1–2):39–57.
  • Antcibor I, Eschenbach A, Zubrzycki S, et al. Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia. Biogeosciences. 2014;11(1):1–15.
  • Todd AS, Manning AH, Verplanck PL, et al. Climate-change-driven deterioration of water quality in a mineralized watershed. Environ Sci Technol. 2012;46(17):9324–9332.
  • McArthur JM, Banerjee DM, Hudson-Edwards KA, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem. 2004;19(8):1255–1293.
  • Wang S, Mulligan CN. Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health. 2006;28(3):197–214.
  • Root TL, Gotkowitz MB, Bahr JM, et al. Arsenic geochemistry and hydrostratigraphy in Midwestern U.S. Glacial deposits. Ground Water. 2010;48(6):903–912.
  • Guan X, Dong H, Ma J, et al. Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process. Water Res. 2009;43(15):3891–3899.
  • Hasegawa H, Rahman MA, Matsuda T, et al. Effect of eutrophication on the distribution of arsenic species in eutrophic and mesotrophic lakes. SciTotal Environ. 2009;407(4):1418–1425.