1,266
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Palygorskite-supported sulfide-modified nanoscale zero-valent iron for Congo red removal

, , , &
Pages 233-239 | Received 10 Jan 2019, Accepted 04 May 2019, Published online: 29 Jul 2019

References

  • Gillham RW, O’Hannesin SF. Enhanced degradation of halogenated aliphatics by zero‐valent iron. Ground Water. 1994;32:10.
  • Yang Hsin S, Chih Ping T. Fast decolorization of azo-dye Congo red with zerovalent iron nanoparticles and sequential mineralization with a fenton reaction. Environ Eng Sci. 2010;29:929–933.
  • O’Carroll D, Sleep B, Krol M, et al. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Res. 2013;51:104–122.
  • Crane RA, Scott TB. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater. 2012;211-212:112–125.
  • Kang S, Liu S, Wang H, et al. Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT. J Hazard Mater. 2016;307:145–153.
  • Cao J, Xiong Z, Lai B. Effect of initial pH on the tetracycline (TC) removal by zero-valent iron: adsorption, oxidation and reduction. Chem Eng J. 2018;343:492–499.
  • Zhang SH, Wu MF, Tang TT, et al. Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale. Chem Eng J. 2018;335:945–953.
  • Ling L, Zhang WX. Sequestration of arsenate in zero-valent iron nanoparticles: visualization of intraparticle reactions at angstrom resolution. Environ Sci Technol Lett. 2014;1:305–309.
  • You W, Weng Y, Wang X, et al. Synthesis and adsorption properties of hierarchically ordered nanostructures derived from porous CaO network. ACS Appl Mater Interfaces. 2016;8:33656–33665.
  • Liu T, Zhao L, Sun D, et al. Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J Hazard Mater. 2010;184:724–730.
  • Quan G, Sun W, Yan J, et al. Nanoscale zero-valent iron supported on biochar: characterization and reactivity for degradation of acid Orange 7 from aqueous solution. Water Air Soil Pollut. 2014;225:2195–2204.
  • Quan G, Zhang J, Guo J, et al. Removal of Cr(VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite. Water Air Soil Pollut. 2014;225:1979–1989.
  • Akbar S, Majid F. Synthesis of clay-supported nanoscale zero-valent iron using green tea extract for the removal of phosphorus from aqueous solutions. Chin J Chem Eng. 2017;25:924–930.
  • Li X, Zhao Y, Xi B, et al. Decolorization of methyl orange by a new clay-supported nanoscale zero-valent iron: synergetic effect, efficiency optimization and mechanism. J Environ Sci (China). 2017;52:8–17.
  • Fan D, O’Brien Johnson G, Tratnyek PG, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR). Environ Sci Technol. 2016;50:9558–9565.
  • Han Y, Yan W. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment. Environ Sci Technol. 2016;50:12992–13001.
  • Fan D, Lan Y, Tratnyek PG, et al. Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation. Environ Sci Technol. 2017;51:13070–13085.
  • Kim EJ, Kim JH, Azad AM, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for eEnvironmental applications. ACS Appl Mater Interfaces. 2011;3:1457–1462.
  • Gu Y, Wang B, He F, et al. Mechanochemically sulfidated microscale zero valent iron: pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination. Environ Sci Technol. 2017;51:12653–12662.
  • Su Y, Adeleye AS, Keller AA, et al. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Res. 2015;74:47–57.
  • Xu C, Zhang B, Wang Y, et al. Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron. Environ Sci Technol. 2016;50:11879–11887.
  • Cao Z, Liu X, Xu J, et al. Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron. Environ Sci Technol. 2017;51:11269–11277.
  • Rajajayavel SR, Ghoshal S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Res. 2015;78:144–153.
  • Hwang YH, Kim DG, Shin HS. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Appl Catal, B. 2011;105:144–150.
  • Carlson R, Simonsen G, Descomps A. Orthogonal experiments in the development of organic synthetic processes. Org Process Res Dev. 2009;13:798–803.
  • Sharma P, Verma A, Sidhu RK, et al. Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. J Mater Process Technol. 2005;168:147–151.
  • Quan G, Zhao H, Yan J. Degradation of Congo red by integration of supported nanoscale zero-valent iron with photo-catalytic oxidation. Desalin Water Treat. 2017;82:114–120.
  • Bezerra MA, Santelli RE, Oliveira EP, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76:965–977.
  • Boursiquot S, Mullet M, Abdelmoula M, et al. The dry oxidation of tetragonal FeS1-xmackinawite. Phys Chem Miner. 2001;28:600–611.
  • Mullet M, Boursiquot S, Abdelmoula M, et al. Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron. Geochim Cosmochim Acta. 2002;66:829–836.
  • Wu D, Peng S, Yan K, et al. Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core–shell structure: sulfidation and as distribution. ACS Sustain Chem Eng. 2018;6:3039–3048.
  • Dong H, Zhang C, Deng J, et al. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res. 2018;135:1–10.