387
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Removal of Pb(II), Cu(II), and Ag(I) from aqueous solutions using biochar derived by P-enriched water hyacinth

, , , , , & show all
Article: 2322491 | Received 26 Dec 2023, Accepted 19 Feb 2024, Published online: 04 Mar 2024

References

  • Chang JJ, Duan YJ, Dong J, et al. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: performance and the response of soil fungal community. Sci Total Environ. 2019;671:676–200. doi: 10.1016/j.scitotenv.2019.03.409
  • Gholizadeh M, Hu X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism. J Environ Chem Eng. 2021;9:105830. doi: 10.1016/j.jece.2021.105830
  • Luo MK, Lin H, He YH, et al. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil. Sci Total Environ. 2020;717:137014. doi: 10.1016/j.scitotenv.2020.137014
  • Chen M, Qin XS, Zeng GM, et al. Impacts of human activity modes and climate on heavy metal “spread” in groundwater are biased. Chemosphere. 2016;152:439–445. doi: 10.1016/j.chemosphere.2016.03.046
  • Gao XL, Zhou FX, Chen CTA, et al. Trace metals in the suspended particulate matter of the Yellow River (Huanghe) estuary: concentrations, potential mobility, contamination assessment and the fluxes into the Bohai Sea. Continent Shelf Res. 2015;104:25–36. doi: 10.1016/j.csr.2015.05.005
  • Freitas ED, Carmo ACR, Almeida Neto AF, et al. Binary adsorption of silver and copper on verde-lodo bentonite: kinetic and equilibrium study. Appl Clay Sci. 2017;137:69–76. doi: 10.1016/j.clay.2016.12.016
  • Anggayasti W, Salamah LN, Rizkymaris A, et al. The role of ion charge density and solubility in the biosorption of heavy metals by natural biofilm matrix of polluted freshwater: the cases of Mg(II), Cr(VI), and Cu(II). Env Pollut Bioavail. 2023;35(1):2220571. doi: 10.1080/26395940.2023.2220571
  • Bailey SE, Olin TJ, Bricka RM, et al. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999;33:2469–2479. doi: 10.1016/S0043-1354(98)00475-8
  • Jiang JX, Shi YS, Ma LN, et al. Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. Environ Pollut. 2024;340:122830. doi: 10.1016/j.envpol.2023.122830
  • Chowdhury P, Athapaththu S, Elkamel A, et al. Visible solar light driven photo-reduction and removal of cadmium ion with Eosin Y-sensitized TiO2 in aqueous solution of triethanolamine. Separ Purif Technol. 2017;174:109–115. doi: 10.1016/j.seppur.2016.10.011
  • Yang LM, Hu WB, Chang ZW, et al. Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: recent advances and future trends. Environ Int. 2021;152:106512. doi: 10.1016/j.envint.2021.106512
  • Zhang LB, Zhang GW, Wang SX, et al. Sulfoethyl functionalized silica nanoparticle as an adsorbent to selectively adsorb silver ions from aqueous solutions. J Taiwan Inst Chem Eng. 2017;71:330–337. doi: 10.1016/j.jtice.2017.01.001
  • Zhao T, Yao Y, Li DR, et al. Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag (I) and Pb (II). Sci Total Environ. 2018;640-641:73–79. doi: 10.1016/j.scitotenv.2018.0.5.251
  • Zare-Dorabei R, Ferdowsi SM, Barzin A, et al. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb (II), Cd (II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2′-dipyridylamine: central composite design optimization. Ultrason Sonochem. 2016;32:265–276. doi: 10.1016/j.ultsonch.2016.03.020
  • Anfar Z, Ahsaine HA, Zbair M, et al. Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review. Crit Rev Env Sci Tec. 2020;50(10):1043–1084. doi: 10.1080/10643389.2019.1642835
  • Wang J, Wang S. Preparation, modification and environmental application of biochar. A revew. J Clean Prod. 2019;227:1002–1022. doi: 10.1016/j.jclepro.2019.04.282
  • Alhashimi HA, Aktas CB. Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recycl. 2017;118:13–26. doi: 10.1016/j.resconrec.2016.11.016
  • Ge QL, Tian Q, Moeen M, et al. Facile synthesis of cauliflower leaves biochar at low temperature in the air atmosphere for Cu (II) and Pb (II) removal from water. Materials. 2020;13(14):3163. doi: 10.3390/ma13143163
  • Lyu HH, Gao B, He F, et al. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem Eng J. 2018;335:110–119. doi: 10.1016/j.cej.2017.10.130
  • Masud MAA, Shin WS, Sarker A, et al. A critical review of sustainable application of biochar for green remediation: research uncertainty and future directions. Sci Total Envrion. 2023;904:166813. doi: 10.1016/j.scitotenv.2023.166813
  • Medeiros DCCDS, Nzediegwu C, Benally C, et al. Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: a critical review. Sci Total Environ. 2021;809:151120. doi: 10.1016/j.scitotenv.2021.151120
  • Zhou N, Chen HG, Xi JT, et al. Biochars with excellent Pb (II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresour Technol. 2017;232:204–210. doi: 10.1016/j.biortech.2017.01.074
  • Yao Y, Gao B, Chen JJ, et al. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour Technol. 2013;138:8–13. doi: 10.1016/j.biortech.2013.03.057
  • Ahmad Z, Gao B, Mosa A, et al. Removal of Cu (II), Cd (II) and Pb (II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J Clean Prod. 2018;180:437–449. doi: 10.1016/j.jclepro.2018.01.133
  • Li RZ, Zhang CY, H J, et al. The application of P-modified biochar in wastewater remediation: a state-of-the-art review. Sci Total Environ. 2024;917:170198. doi: 10.1016/j.scitotenv.2024.170198
  • Yan YB, Sarkar B, Zhou L, et al. Phosphorus-rich biochar produced through bean-worm skin waste pyrolysis enhances the adsorption of aqueous lead. Environ Pollut. 2020;266:115177–115183. doi: 10.1016/j.envpol.2020.115177
  • Zhang H, Shao JG, Zhang SH, et al. Effect of phosphorous-modified biochars on immobilization of Cu (II), Cd (II) and as (V) in paddy soil. J Hazard Mater. 2020;390:121349–121356. doi: 10.1016/j.jhazmat.2019.121349
  • Chen L, Li CG, Li FM, et al. Comparison of growth characteristics and application potential of aquatic ecological restoration plants. Environ Pollut Control. 2022;44:933–938. in Chinese. doi: 10.15985/j.cnki.1001-3865.2022.07.017
  • Zhang YY, Yan SH, Liu HQ. Mechanism of interaction between Eichhornia crassipes and phosphorus in ecological-remediation technology of eutrophic water. Ecol Environ Sci. 2017;26:721–728. in Chinese. doi:10.16258/j.cnki.1674-5906.2017.04.026
  • Liu R, Luo X, Zhang H. Biochar modified by oxidation for adsorption of cationic and anionic dye from aqueous solutions. Sci Technol Engrg. 2018;18:131–135. in Chinese.
  • Liu R, Li S, Zhang H, et al. Adsorption characterization of cationic and anionic dye from aqueous solution by HNO3 modified biochar. Technol Water Treat. 2019;45:28–34. in Chinese. doi: 10.16796/j.cnki.1000-3770.2019.03.006
  • Liu R, Li YC, Zhao ZM, et al. Synthesis and characterization of clay-biochars produced with facile low-temperature one-step in the presence of air for adsorbing methylene blue from aqueous solution. Front Environ Sci. 2023;11:1137284. doi: 10.3389/fenvs.2023.1137284
  • Wang B, Gao B, Wan YS. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd (II). J Ind Eng Chem. 2018;61:161–168. doi: 10.1016/j.jiec.2017.12.013
  • Yao Y, Gao B, Chen JJ, et al. Engineered biochar reclaiming phosphate from aqueous solutions: mechanism and potential application as a slow-release fertilizer. Environ Sci Technol. 2013;47:8700–8708. doi: 10.1021/es4012977
  • Zou GH, Dai MJ, Zhao FL, et al. Characteristics of biochar prepared from Hainan typical feedstocks in different temperatures. Chin J Trop Crop. 2020;41:1498–1504. in Chinese. doi: 10.3969/j.issn.1000-2561.2020.07.029
  • Liu S, Li JH, Xu S, et al. A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresour Technol. 2019;282:48–55. doi: 10.1016/j.biortech.2019.02.092
  • Yao Y, Gao B, Fang J, et al. Characterization and environmental applications of clay–biochar composites. Chem Eng J. 2014;242:136–143. doi: 10.1016/j.cej.2013.12.062
  • Yao Y, Gao B, Zhang M, et al. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemospherer. 2012;89(11):1467–1471. doi: 10.1016/j.chemosphere.2012.06.002
  • Meng J, Zhang HL, Cui ZH, et al. Comparative study on the characteristics and environmental risk of potentially toxic elements in biochar obtained via pyrolysis of swine manure at lab and pilot scales. Sci Total Environ. 2022;825:153941. doi: 10.1016/j.scitotenv.2022.153941
  • Cai J, 2018. The Study of adsorption of Cadmium in aqueous solution by phosphate-modifed bamboo biochar. Master thesis Huazhong University of Science and Techonology, Wuhan, Hubei, China (in Chinese).
  • Chen HY, Li WY, Wang JJ, et al. Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: selective adsorption and influence of dissolved organic matter. Bioresour Technol. 2019;292:121948. doi: 10.1016/j.biortech.2019.121948
  • Peng HB, Gao P, Chu G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut. 2017;229:846–853. doi: 10.1016/j.envpol.2017.07.004
  • Simsir H, Eltugral N, Karagoz S. Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresour Technol. 2017;246:82–87. doi: 10.1016/j.biortech.2017.07.018
  • Zhou RJ, Zhang M. Adsorption characteristics of heavy metal ions in water by water hyacinth biochar. Safety Environ Eng. 2022;29:168–177. in Chinese. doi: 10.13578/j.cnki.issn.1671-1566.20210847
  • Harvey OR, Herbert BE, Kuo LJ, et al. Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars. Environ Sci Technol. 2012;46(19):10641–10650. doi: 10.1021/es302971d
  • Mia S, Dijkstra FA, Singh B. Long-term aging of biochar: a molecular understanding with agricultural and environmental implications. Adv Agron Elseviern Inc. 2017;141:1–51. doi: 10.1016/bs.agron.2016.10.001
  • Qian LB, Chen BL. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. J Agric Food Chem. 2014;62(2):373–380. doi: 10.1021/jf404624h
  • Zhang XM, Zhang ZZ, Zhao FX, et al. Synthesis and characterization of silver nano-particles. Chinese J Vacuum Sci Technol. 2013;33:1037–1041. doi: 10.3969/j.issn.1672-7126.2013.10.16
  • Su L, Zhang HB, Cheng HY, et al. Study on adsorption properties of biochar derived from spent auricularia substrate for cationic dyes. China Environ Sci. 2021;41:693–703. in Chinese. doi: 10.19674/j.cnki.issn1000-6923.2021.0080
  • Liu HC, Feng SP, Zhang NN, et al. Removal of Cu(II) ions from aqueous solution by activated carbon impregnated with humic acid. Front Environ Sci Eng. 2014;8(3):329–336. doi: 10.1007/s11783-013-0553-9
  • Luo XH, Yu L, Wang CZ, et al. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere. 2017;169:609–617. doi: 10.1016/j.chemosphere.2016.11.105
  • Peng P, Lang YH, Wang XM. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecol Eng. 2016;90:225–233. doi: 10.1016/j.ecoleng.2016.01.039
  • Shi TH, Jia SG, Chen Y, et al. Adsorption of Pb (II), Cr (III), Cu (II), Cd (II) and Ni (II) onto a vanadium mine tailing from aqueous solution. J Hazard Mater. 2009;169(1–3):838–846. doi: 10.1016/j.jhazmat.2009.04.020
  • Song XH, Gunawan P, Jiang RR, et al. Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater. 2011;194:162–168. doi: 10.1016/j.jhazmat.2011.07.076