446
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Enhancing sustainability: microalgae cultivation for biogas enrichment and phycoremediation of palm oil mill effluent - a comprehensive review

, , , , , , , , , & show all
Article: 2347314 | Received 19 Dec 2023, Accepted 19 Apr 2024, Published online: 12 May 2024

References

  • Pascoal PV, Ribeiro DM, Cereijo CR, et al. Biochemical and phylogenetic characterization of the wastewater tolerant chlamydomonas biconvexa Embrapa LBA40 strain cultivated in palm oil mill effluent. PLOS One. 2021;16(4):e0249089. doi: 10.1371/journal.pone.0249089
  • Chia WY, Chong YY, Chew KW, et al. Outlook on biorefinery potential of palm oil mill effluent for resource recovery. J Environ Chem Eng. 2020;8(6). doi: 10.1016/j.jece.2020.104519
  • Khadaroo SNBA, Poh PE, Gouwanda D, et al. Applicability of various pretreatment techniques to enhance the anaerobic digestion of palm oil mill effluent (POME): a review. J Environ Chem Eng. 2019;7(5):103310. doi: 10.1016/j.jece.2019.103310
  • Tabassum S, Zhang Y, Zhang Z. An integrated method for palm oil mill effluent (POME) treatment for achieving zero liquid discharge – a pilot study. J Clean Prod. 2015;95:148–319. doi: 10.1016/j.jclepro.2015.02.056
  • Mahmod SS, Azahar AM, Luthfi AAI, et al. Potential utilisation of dark-fermented palm oil mill effluent in continuous production of biomethane by self-granulated mixed culture. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-65702-w
  • Cheau Chin Y, Yi Jing C, Soh Kheang L, et al. Comparison of different industrial scale palm oil mill effluent anaerobic systems in degradation of organic contaminants and kinetic performance. J Clean Prod. 2020;262:121361. doi: 10.1016/j.jclepro.2020.121361
  • Tan KA, Wan Maznah WO, Morad N, et al. Advances in POME treatment methods: potentials of phycoremediation, with a focus on South East Asia. Int J Environ Sci Technol. 2022b;19(8):8113–8130. doi: 10.1007/s13762-021-03436-6
  • Tan KA, Lalung J, Wijaya D, et al. Removal of nutrients by using green microalgae from lab-scale treated palm oil mill effluent. Fermentation. 2022a;8(11):658. doi: 10.3390/fermentation8110658
  • Nur MMA, Buma AGJ. Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Waste Biomass Valorization. 2019;10(8):2079–2097. doi: 10.1007/s12649-018-0256-3
  • Ooi WC, Dominic D, Kassim MA, et al. Biomass fuel production through cultivation of microalgae coccomyxa dispar and scenedesmus parvus in palm oil mill effluent and simultaneous phycoremediation. Agriculture. 2023;13(2):336. doi: 10.3390/agriculture13020336
  • Ravishankar GA, Ranga Rao A. Handbook of algal technologies and phytochemicals; volume II phycoremediation, biofuels and global biomass production. ISBN 9780367178192. USA: CRC Press, Taylor and Francis Ltd; 2019b.
  • Solovchenko A, Lukyanov A, Aswathanarayana RG, et al. Recent developments in microalgal conversion of organic-enriched waste streams. Current Opin Green Sustain Chem. 2020;24:61–66. doi: 10.1016/j.cogsc.2020.03.006
  • Yaakob MA, Mohamed RMSR, Al-Gheethi A, et al. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells. 2021;10(2):393. doi: 10.3390/cells10020393
  • Mandley SJ, Daioglou V, Junginger HM, et al. EU bioenergy development to 2050. Renew Sust Energ Rev. 2020;127:109858. doi: 10.1016/j.rser.2020.109858
  • Putro LHS. Emissions of CH4 and CO2 from wastewater of palm oil mills: a real contribution to increase the greenhouse gas and its potential as renewable energy sources. Environ Nat Resour J. 2022;20(1):1–12. doi: 10.32526/ENNRJ/20/202100149
  • Wassie YT, Adaramola MS. Potential environmental impacts of small-scale renewable energy technologies in East Africa: a systematic review of the evidence. Renew Sust Energ Rev. 2019;111:377–391. doi: 10.1016/j.rser.2019.05.037
  • Aghel B, Behaein S, Alobiad F. CO2 capture from biogas by biomass-based adsorbents: a review. Fuel. 2022;328:125276. doi: 10.1016/j.fuel.2022.125276
  • Mulu E, M’Arimi MM, Ramkat RC. A review of recent developments in application of low cost natural materials in purification and upgrade of biogas. Renew Sust Energ Rev. 2021;145:111081. doi: 10.1016/j.rser.2021.111081
  • Rasi S, Veijanen A, Rintala J. Trace compounds of biogas from different biogas production plants. Energy. 2007;32(8):1375–1380. doi: 10.1016/j.energy.2006.10.018
  • Rosner F, Samuelsen S. Thermo-economic analysis of a solid oxide fuel cell-gas turbine hybrid with commercial off-the-shelf gas turbine. Appl Energy. 2022;324:324. doi: 10.1016/j.apenergy.2022.119745
  • Khan IU, Othman MHD, Hashim H, et al. Biogas as a renewable energy fuel–A review of biogas upgrading, utilisation and storage. Energy Conv Manag. 2017;150:277–294. doi: 10.1016/j.enconman.2017.08.035
  • Khan MU, Lee JTE, Bashir MA, et al. Current status of biogas upgrading for direct biomethane use: a review. Renew Sust Energ Rev. 2021;149:149. doi: 10.1016/j.rser.2021.111343
  • Struk M, Kushkevych I, Vítězová M. Biogas upgrading methods: recent advancements and emerging technologies. Rev Environ Sci Biotechnol. 2020;19(3):651–671. doi: 10.1007/s11157-020-09539-9
  • Zhao J, Li Y, Dong R. Recent progress towards in-situ biogas upgrading technologies. Sci Total Environ. 2021;800:149667. doi: 10.1016/j.scitotenv.2021.149667
  • Ahmed SF, Mofijur M, Tarannum K, et al. Biogas upgrading, economy and utilization: a review. Environ Chem Lett. 2021;19(6):4137–4164. doi: 10.1007/s10311-021-01292-x
  • Nur MMA, Swaminathan MK, Boelen P, et al. Sulfated exopolysaccharide production and nutrient removal by the marine diatom phaeodactylum tricornutum growing on palm oil mill effluent. J Appl Phycol. 2019c;31(4):2335–2348. doi: 10.1007/s10811-019-01780-2
  • Aziz MMA, Kassim KA, ElSergany M, et al. Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production. Renew Sust Energ Rev. 2020;119:109603. doi: 10.1016/j.rser.2019.109603
  • Ahmed Y, Yaakob Z, Akhtar P, et al. Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME). Renew Sust Energ Rev. 2015;42:1260–1278. doi: 10.1016/j.rser.2014.10.073
  • Ng KH. Adoption of TiO2-photocatalysis for palm oil mill effluent (POME) treatment: strengths, weaknesses, opportunities, threats (SWOT) and its practicality against traditional treatment in Malaysia. Chemosphere. 2021;270:129378. doi: 10.1016/j.chemosphere.2020.129378
  • Indriyati A. Potensi limbah industri kelapa sawit di Indonesia. J Rekayasa Lingkungan. 2008;4(1):93–103. doi: 10.29122/jrl.v4i1.1852
  • Abuhasel K, Kchaou M, Alquraish M, et al. Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities. Water (Switzerland). 2021;13(7):980. doi: 10.3390/w13070980
  • Mustafa HM, Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: a review article. Ain Shams Engineering Journal. 2021;12(1):355–365.
  • Fayyad RJ, Muslim SN, Ali ANM. Application strategies for using fungi and algae as bioremediators: a review. Plant Arch. 2020;20(1):788–792.
  • Kaloudas D, Pavlova N, Penchovsky R. Phycoremediation of wastewater by microalgae: a review. Environ Chem Lett. 2021;19(4):2905–2920. doi: 10.1007/s10311-021-01203-0
  • Nur MMA, Garcia GM, Boelen P, et al. Influence of photodegradation on the removal of color and phenolic compounds from palm oil mill effluent by Arthrospira platensis. J Appl Phycol. 2021;33(2):901–915. doi: 10.1007/s10811-020-02341-8
  • Chan SS, Khoo KS, Chew KW, et al. Recent advances biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium-A review. Biores Technol. 2022;344:126159. doi: 10.1016/j.biortech.2021.126159
  • Melo JM, Ribeiro MR, Telles TS, et al. Microalgae cultivation in wastewater from agricultural industries to benefit next generation of bioremediation: a bibliometric analysis. Environ Sci Pollut Res. 2022;29(15):22708–22720. doi: 10.1007/s11356-021-17427-0
  • Parsy A, Monlau F, Guyoneaud R, et al. Nutrient recovery in effluents from the energy sectors for microalgae and cyanobacteria biomass production: a review. Renew Sust Energ Rev. 2024;191:114207. doi: 10.1016/j.rser.2023.114207
  • Manikandan A, Suresh Babu P, Shyamalagowri S, et al. Emerging role of microalgae in heavy metal bioremediation. J Basic Microbiol. 2022;62(3–4):330–347. doi: 10.1002/jobm.202100363
  • Wu X, Wu H, Zhang A, et al. Influence of polystyrene microplastics on levofloxacin removal by microalgae from freshwater aquaculture wastewater. J Environ Manag. 2022;301:113865. doi: 10.1016/j.jenvman.2021.113865
  • Plöhn M, Spain O, Sirin S, et al. Wastewater treatment by microalgae. Physiol Plant. 2021;173(2):568–578. doi: 10.1111/ppl.13427
  • Nur MMA, Djarot IN, Boelen P, et al. Co-cultivation of microalgae growing on palm oil mill effluent under outdoor condition for lipid production. Environ Pollut Bioavailabil. 2022;34(1):537–548. doi: 10.1080/26395940.2022.2147098
  • Saka Rani D, Supriyanto DS, Nando Winata H, et al. The conceptual of energy demand for polyculture microalgae biomass production in large-scale open raceway pond using excess energy and effluent from palm oil mills. In: 5th International Conference on Science and Technology (ICST); IEEE; 2019. doi: 10.1109/ICST47872.2019.9166415
  • Ranga Rao A, Dayananda C, Sarada R, et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Biores Technol. 2007;98(3):560–564. doi: 10.1016/j.biortech.2006.02.007
  • Ranga R, Sarada R, Ravishankar GA. Influence of CO2 on growth and hydrocarbon production in botryococcus braunii. J Microbiol Biotechnol. 2007;17(3):414–419.
  • Ravishankar GA, Ambati RR, editors. Handbook of algal technologies and phytochemicals: volume I-Food, health and nutraceutical applications. USA: CRC Press; 2019.
  • Ahmad A, Bhat AH, Buang A, et al. Biotechnological application of microalgae for integrated palm oil mill effluent (POME) remediation: a review. Int J Environ Sci Technol. 2019;16(3):1763–1788. doi: 10.1007/s13762-018-2118-8
  • Low SS, Bong KX, Mubashir M, et al. Microalgae cultivation in palm oil mill effluent (Pome) treatment and biofuel production. Sustainability. 2021;13(6):3247. doi: 10.3390/su13063247
  • Halim AA, Samsudin A, Azmi AS, et al. Nutrients and chemical oxygen demand (COD) removals by microalgae-bacteria co-culture system in palm oil mill effluent (POME). IIUM Eng J. 2019;20(2):22–31. doi: 10.31436/iiumej.v20i2.1109
  • Nur MMA, Setyoningrum TM, Budiaman IGS. Potency of botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel. Environ Eng Res. 2017;22(4):417–425. doi: 10.4491/eer.2017.053
  • Cheah WY, Show PL, Juan JC, et al. Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Conv Manag. 2018;174:430–438. doi: 10.1016/j.enconman.2018.08.057
  • Takriff MS, Zakaria MZ, Sajab MS, et al. Pre-treatments anaerobic palm oil mill effluent (POME) for microalgae treatment. Indian J Sci Technol. 2016;9(21):1–8. doi: 10.17485/ijst/2016/v9i21/95248
  • Mahmod SS, Jahim JM, Abdul PM. Pre-treatment conditions of palm oil mill effluent (POME) for thermophilic bio-hydrogen production by mixed culture. Int J Hydrogen Energy. 2017;42(45):27512–27522. doi: 10.1016/j.ijhydene.2017.07.178
  • Nahrul Hayawin Z, Ibrahim MF, Nor Faizah J, et al. Palm oil mill final discharge treatment by a continuous adsorption system using oil palm kernel shell activated carbon produced from two-in-one carbonization activation reactor system. Water Proc Eng. 2020;36:101262. doi: 10.1016/j.jwpe.2020.101262
  • Jürgensen EJ. Treatment of wastewater. World patent WO2007053110A1; 2007.
  • Ambati RR, Gogisetty D, Aswathanarayana RG, et al. Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr. 2019;59(12):1880–1902. doi: 10.1080/10408398.2018.1432561
  • Ravishankar GA, Ambati RR, editors. Global perspectives on astaxanthin: from industrial production to food, health, and pharmaceutical applications. London, United Kingdom: Academic Press; 2021.
  • Tan JS, Lee SY, Chew KW, et al. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered. 2020;11(1):116–129. doi: 10.1080/21655979.2020.1711626
  • Sarkar S, Manna MS, Bhowmick TK, et al. Priority-based multiple products from microalgae: review on techniques and strategies. Crit Rev Biotechnol. 2020;40(5):590–607. doi: 10.1080/07388551.2020.1753649
  • Rahul SM, Sundaramahalingam MA, Shivamthi CS, et al. Insights about sustainable biodiesel production from microalgae biomass: a review. Intl J Energy Res. 2021;45(12):17028–17056. doi: 10.1002/er.6138
  • Ranga Rao A, Ravishankar GA. Microalgal biomass, lipids, and fatty acids production through open or closed cultivation systems: challenges and future perspectives. In: Ravishankar GA Ranga Rao A, editors. Handbook of algal technologies and phytochemicals. USA: CRC Press; 2019. 91–99.
  • You X, Yang L, Zhou X, et al. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: a review. Environ Res. 2022;209:112860. doi: 10.1016/j.envres.2022.112860
  • Udaiyappan AFM, Hasan HA, Takriff MS, et al. Microalgae-bacteria interaction in palm oil mill effluent treatment. Water Proc Eng. 2020;35:101203. doi: 10.1016/j.jwpe.2020.101203
  • Udaiyappan AFM, Hasan HA, Takriff MS, et al. Cultivation and application of Scenedesmus sp. strain UKM9 in palm oil mill effluent treatment for enhanced nutrient removal. J Clean Prod. 2021;294:126295. doi: 10.1016/j.jclepro.2021.126295
  • Ding GT, Yasin NHM, Takriff MS, et al. Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and chlorella pyrenoidosa UKM7. Water Proc Eng. 2020;35:101202. doi: 10.1016/j.jwpe.2020.101202
  • Tan KA, Lalung J, Morad N, et al. Post-treatment of palm oil mill effluent using immobilised green microalgae chlorococcum oleofaciens. Sustainability. 2021;13(21):11562. doi: 10.3390/su132111562
  • Emparan Q, Jye YS, Danquah MK, et al. Cultivation of Nannochloropsis sp. microalgae in palm oil mill effluent (POME) media for phycoremediation and biomass production: effect of microalgae cells with and without beads. Water Proc Eng. 2020;33:101043. doi: 10.1016/j.jwpe.2019.101043
  • Hariz HB, Takriff MS, Mohd Yasin NH, et al. Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat palm oil mill effluent (POME) by indigenous microalgae. Scenedesmus Sp Chlorella Sp J Water Proc Eng. 2019;32:100907. doi: 10.1016/j.jwpe.2019.100907
  • Khalid AAH, Yaakob Z, Abdullah SRS, et al. Assessing the feasibility of microalgae cultivation in agricultural wastewater: the nutrient characteristics. Environ Technol Innov. 2019;15:100402. doi: 10.1016/j.eti.2019.100402
  • Liu XY, Hong Y, Zhao GP, et al. Microalgae-based swine wastewater treatment: strain screening, conditions optimization, physiological activity and biomass potential. Sci Total Environ. 2022;807:151008. doi: 10.1016/j.scitotenv.2021.151008
  • Ahmad I, Abdullah N, Koji I, et al. The contribution of microalgae in bio-refinery and resource recovery: a sustainable approach leading to circular bio-economy. Chem Eng Trans. 2021;89:391–396.
  • Liu XY, Hong Y. Microalgae-based wastewater treatment and recovery with biomass and value-added products: a brief review. Curr Pollut Rep. 2021;7(2):227–245. doi: 10.1007/s40726-021-00184-6
  • De Carvalho JC, Goyzueta-Mamani LD, Molina-Aulestia DT, et al. Microbial astaxanthin production from agro-industrial wastes—raw materials, processes, and quality. Fermentation. 2022;8(10):484. doi: 10.3390/fermentation8100484
  • Vairappan CS, Yen AM. Palm oil mill effluent (POME) cultured marine microalgae as supplementary diet for rotifer culture. J Appl Phycol. 2008;20(5):603–608. doi: 10.1007/s10811-007-9305-1
  • Nur MMA, Garcia GM, Boelen P, et al. Enhancement of C-phycocyanin productivity by Arthrospira platensis when growing on palm oil mill effluent in a two-stage semi-continuous cultivation mode. J Appl Phycol. 2019a;31(5):2855–2867. doi: 10.1007/s10811-019-01806-9
  • Nur MMA, Muizelaar W, Boelen P, et al. Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom phaeodactylum tricornutum grown on palm oil mill effluent. J Appl Phycol. 2019b;31(1):111–122. doi: 10.1007/s10811-018-1563-6
  • Fernando JSR, Premaratne M, Dinalankara DMSD, et al. Cultivation of microalgae in palm oil mill effluent (POME) for astaxanthin production and simultaneous phycoremediation. J Environ Chem Eng. 2021;9(4):105375. doi: 10.1016/j.jece.2021.105375
  • Nur MMA. Co-production of polyhydroxybutyrate and C-phycocyanin from Arthrospira platensis growing on palm oil mill effluent by employing UV-C irradiation. J Appl Phycol. 2022;34(3):1389–1396. doi: 10.1007/s10811-022-02738-7
  • Kumaran M, Palanisamy KM, Bhuyar P, et al. Agriculture of microalgae chlorella vulgaris for polyunsaturated fatty acids (PUFAs) production employing palm oil mill effluents (POME) for future food, wastewater, and energy nexus. Energy Nexus. 2022;100169:100169. doi: 10.1016/j.nexus.2022.100169
  • Palanisamy KM, Maniam GP, Sulaiman AZ, et al. Palm oil mill effluent for lipid production by the diatom thalassiosira pseudonana. Fermentation. 2022;8(1):23. doi: 10.3390/fermentation8010023
  • Cheah WY, Show PL, Yap YJ, et al. Enhancing microalga chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photo-bioreactor. Bioengineered. 2020;11(1):61–69. doi: 10.1080/21655979.2019.1704536
  • Nur MMA, Yuliestyan A, Irfandy F, et al. Nutritional factors influence polyhydroxybutyrate in microalgae growing on palm oil mill effluent. J Appl Phycol. 2022;34(1):127–133. doi: 10.1007/s10811-021-02654-2
  • Nur MMA, Djarot IN, Sasongko NA, et al. Co-cultivation of chaetoceros calcitrans and Arthrospira platensis growing on palm oil mill effluent under outdoor condition to produce fucoxanthin and c-phycocyanin. Biocatal Agric Biotechnol. 2023a;47:102611. doi: 10.1016/j.bcab.2023.102611
  • Tada K, Watanabe M, Yoshida M, et al. Method for culturing heterotrophic microalgae using palm oil mill effluent (pome) and method for producing DHA. World patent WO2020026794A1; 2020.
  • Palanisamy KM, Paramasivam P, Maniam GP, et al. Production of lipids by chaetoceros affinis in media based on palm oil mill effluent. J Biotechnol. 2021;327:86–96. doi: 10.1016/j.jbiotec.2020.12.021
  • Nur MMA. Co-production of fucoxanthin and lipid from Indonesian diatom and green algae growing on palm oil mill effluent under mixotrophic condition. Biocatal Agric Biotechnol. 2021;38:102228. doi: 10.1016/j.bcab.2021.102228
  • Hosseini SE, Bagheri G, Wahid MA, et al. Clean fuel, clean energy conversion technology: experimental and numerical investigation of palm oil mill effluent biogas flameless combustion. BioResources. 2015;10(4). doi: 10.15376/biores.10.4.6597-6609
  • Khalil M, Berawi MA, Heryanto R, et al. Waste to energy technology: the potential of sustainable biogas production from animal waste in Indonesia. Renew Sust Energ Rev. 2019;105:323–331. doi: 10.1016/j.rser.2019.02.011
  • Safieddin Ardebili SM. Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran. Renew Energy. 2020;154:29–37. doi: 10.1016/j.renene.2020.02.102
  • Gozan M, Aulawy N, Rahman SF, et al. Modeling study of the particulate matter in Lima with the WRF-Chem Model: case study of April 2016. Int J Appl Eng Res. 2018;13(8):10129–10141.
  • Archana K, Visckram AS, Kumar PS, et al. A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: challenges towards sustainable development goals. Fuel. 2024;358:130298. doi: 10.1016/j.fuel.2023.130298
  • Menzel T, Neubauer P, Junne S. Role of microbial hydrolysis in anaerobic digestion. Energies. 2020;13(21):5555. doi: 10.3390/en13215555
  • Zainal BS, Akhbari A, Zinatizadeh AA, et al. UASFF start-up for biohydrogen and biomethane production from treatment of palm oil mill effluent. Int J Hydrogen Energy. 2019;44(37):20725–20737. doi: 10.1016/j.ijhydene.2018.07.037
  • Krishnan S, Din MFM, Taib SM, et al. Accelerated two-stage bioprocess for hydrogen and methane production from palm oil mill effluent using continuous stirred tank reactor and microbial electrolysis cell. J Clean Prod. 2019;229:84–93. doi: 10.1016/j.jclepro.2019.04.365
  • Krishnan S, Singh L, Sakinah M, et al. Process enhancement of hydrogen and methane production from palm oil mill effluent using two-stage thermophilic and mesophilic fermentation. Int J Hydrogen Energy. 2016;41(30):12888–12898. doi: 10.1016/j.ijhydene.2016.05.037
  • Mamimin C, Singkhala A, Kongjan P, et al. Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. Int J Hydrogen Energy. 2015;40(19):6319–6328. doi: 10.1016/j.ijhydene.2015.03.068
  • Yap CC, Chan YJ, Loh SK, et al. Pilot-scale investigation of the integrated anaerobic–aerobic bioreactor (IAAB) treating palm oil mill effluent (POME): startup and performance evaluation. Ind Eng Chem Res. 2021;60(10):3839–3859. doi: 10.1021/acs.iecr.0c05878
  • Abdurahman NH, Rosli YM, Azhari NH, et al. A hybrid ultrasonic membrane anaerobic system (UMAS) development for palm oil mill effluent (POME) treatment. Processes. 2023;11(8):2477. doi: 10.3390/pr11082477
  • Khemkhao M, Domrongpokkaphan V, Phalakornkule C. Process performance and microbial community variation in high-rate anaerobic continuous stirred tank reactor treating palm oil mill effluent at temperatures between 55 and 70° C. Waste Biomass Valorization. 2022;13:431–442.
  • Ohimain EI, Izah SC. A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew Sust Energ Rev. 2017;70:242–253. doi: 10.1016/j.rser.2016.11.221
  • Poh PE, Chong MF. Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Biores Technol. 2009;100(1). doi: 10.1016/j.biortech.2008.06.022
  • Najafpour GD, Zinatizadeh AAL, Mohamed AR, et al. High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. Process Biochem. 2006;41(2):370–379. doi: 10.1016/j.procbio.2005.06.031
  • Abdurahman NH, Rosli YM, Azhari NH. Development of a membrane anaerobic system (MAS) for palm oil mill effluent (POME) treatment. Desalination. 2011;266(1–3):208–212. doi: 10.1016/j.desal.2010.08.028
  • Chan YJ, Chong MF, Law CL. An integrated anaerobic–aerobic bioreactor (IAAB) for the treatment of palm oil mill effluent (POME): start-up and steady state performance. Process Biochem. 2012;47(3):485–495. doi: 10.1016/j.procbio.2011.12.005
  • Chan YJ, Seng Hue F, Fong Chong M, et al. Pre-commercialized integrated anaerobic-aerobic bioreactor (iaab) for palm oil mill effluent (pome) treatment & biogas generation. J Oil Palm Environ Health. 2020;11:57–66.
  • Irvan Trisakti B, Maulina S, Daimon H. Production of biogas from palm oil mill effluent at pilot scale: effect of recycle sludge. Orient J Chem. 2018;34(1):161–168. doi: 10.13005/ojc/340118
  • Angelidaki I, Treu L, Tsapekos P, et al. Biogas upgrading and utilization: Current status and perspectives. Biotechnol Adv. 2018;36(2):452–466. doi: 10.1016/j.biotechadv.2018.01.011
  • Kapoor R, Ghosh P, Kumar M, et al. Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res. 2019;26(12):11631–11661. doi: 10.1007/s11356-019-04767-1
  • Bose A, Lin R, Rajendran K, et al. How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection. Biotechnol Adv. 2019;37(8):107444. doi: 10.1016/j.biotechadv.2019.107444
  • Liu J, Qin H, Meng X, et al. Nutrient removal from biogas slurry and biogas upgrading by microalgae-fungi-bacteria co-cultivation under different carbon nanotubes concentration. Environ Sci Pollut Res. 2023;30(13):36023–36032. doi: 10.1007/s11356-022-24822-8
  • Méndez L, García D, Perez E, et al. Photosynthetic upgrading of biogas from anaerobic digestion of mixed sludge in an outdoors algal-bacterial photobioreactor at pilot scale. Water Proc Eng. 2022;48:48. doi: 10.1016/j.jwpe.2022.102891
  • Zhang J, Zhao C, Sun S, et al. Performance of different microalgae-based technologies in nutrient removal and biogas upgrading in response to various GR24 concentrations. Int Biodeterior Biodegrad. 2021;158:158. doi: 10.1016/j.ibiod.2020.105166
  • Marín D, Ortíz A, Díez-Montero R, et al. Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading performance in a demo scale algal-bacterial photobioreactor. Biores Technol. 2019;280:112–117. doi: 10.1016/j.biortech.2019.02.029
  • Wang X, Bao K, Cao W, et al. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology. Sci Rep. 2017;7(1). doi: 10.1038/s41598-017-05841-9
  • Zhang Y, Bao K, Wang J, et al. Performance of mixed LED light wavelengths on nutrient removal and biogas upgrading by different microalgal-based treatment technologies. Energy. 2017;130:392–401. doi: 10.1016/j.energy.2017.04.157
  • Meier L, Barros P, Torres A, et al. Photosynthetic biogas upgrading using microalgae: effect of light/dark photoperiod. Renewable Energy. 2017;106:17–23. doi: 10.1016/j.renene.2017.01.009
  • Xu J, Wang X, Sun S, et al. Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage. Sci Rep. 2017;7(1). doi: 10.1038/s41598-017-11207-y
  • Prandini JM, da Silva MLB, Mezzari MP, et al. Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae scenedesmus spp. Biores Technol. 2016;202:67–75. doi: 10.1016/j.biortech.2015.11.082
  • Wang Z, Zhao Y, Ge Z, et al. Selection of microalgae for simultaneous biogas upgrading and biogas slurry nutrient reduction under various photoperiods. J Chem Technol Biot. 2016;91(7):1982–1989. doi: 10.1002/jctb.4788
  • Xu J, Zhao Y, Zhao G, et al. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Appl Microbiol Biotechnol. 2015;99(15):6493–6501. doi: 10.1007/s00253-015-6537-x
  • Yan C, Zheng Z. Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga chlorella sp. Appl Energy. 2014;113:1008–1014. doi: 10.1016/j.apenergy.2013.07.012
  • Handayani T, Djarot IN, Widyastuti N, et al. Biogas quality and nutrient remediation in palm oil mill effluent through chlorella vulgaris cultivation using a photobioreactor. Global J Environ Sci Manage. 2024;10(4):1–24.
  • Ali Abd A, Roslee Othman M. Biogas upgrading to fuel grade methane using pressure swing adsorption: Parametric sensitivity analysis on an industrial scale. Fuel. 2022;308:308. doi: 10.1016/j.fuel.2021.121986
  • Ruiz-Ruiz P, Gómez-Borraz TL, Revah S, et al. Methanotroph-microalgae co-culture for greenhouse gas mitigation: effect of initial biomass ratio and methane concentration. Chemosphere. 2020;259:259. doi: 10.1016/j.chemosphere.2020.127418
  • Meier L, Pérez R, Azócar L, et al. Photosynthetic CO2 uptake by microalgae: an attractive tool for biogas upgrading. Biomass Bioenergy. 2015;73:102–109. doi: 10.1016/j.biombioe.2014.10.032
  • Tongprawhan W, Srinuanpan S, Cheirsilp B. Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid. Biores Technol. 2014;170:90–99. doi: 10.1016/j.biortech.2014.07.094
  • Kao CY, Chiu SY, Huang TT, et al. A mutant strain of microalga Chlorella sp. for the carbon dioxide capture from biogas. Biomass Bioenergy. 2012;36:132–140. doi: 10.1016/j.biombioe.2011.10.046
  • Meier L, Stará D, Bartacek J, et al. Removal of H2S by a continuous microalgae-based photosynthetic biogas upgrading process. Process SafEnviron Prot. 2018;119:65–68. doi: 10.1016/j.psep.2018.07.014
  • Bahr M, Díaz I, Dominguez A, et al. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ Sci Technol. 2014;48(1):573–581. doi: 10.1021/es403596m
  • Jasni J, Arisht SN, Mohd Yasin NH, et al. Comparative toxicity effect of organic and inorganic substances in palm oil mill effluent (POME) using native microalgae species. Water Proc Eng. 2020;34:101165. doi: 10.1016/j.jwpe.2020.101165
  • Yaakob Z, Ali E, Zainal A, et al. An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res Thessaloniki. 2014;21(1):1–10. doi: 10.1186/2241-5793-21-6
  • Guo S, Wang P, Wang X, et al. Microalgae as biofertilizer in modern agriculture. In: Alam M, Xu JL, Wang Z, editors. Microalgae Biotechnol Food Health High Value Prod. Singapore: Springer; 2020. p. 397–411. https://doi.org/10.1007/978-981-15-0169-2_12
  • Nur MMA, Achmad Z, Jaya D, et al. Screening and optimization of cyanobacteria cultivated on palm oil mill effluent (POME) to produce polyhydroxybutyrate. J Appl Phycol. 2023b;35(3):1213–1221. doi: 10.1007/s10811-023-02954-9
  • Nur MMA, Dewi RN. Opportunities and challenges of microalgae in biocement production and self-repair mechanisms. Biocatal Agric Biotechnol. 2024;56:1–15. doi: 10.1016/j.bcab.2024.103048
  • Chaudhuri R, Balasubramanian P. Evaluating the potential of exopolysaccharide extracted from the spent cultivation media of Spirulina sp. as plant biostimulant. Biomass Convers Biorefin. 2023. doi: 10.1007/s13399-023-04865-8