38
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent progress and perspectives on metal oxide catalysts for thermocatalytic and photocatalytic oxidation of VOCs: a review

, , , &
Article: 2376827 | Received 18 Apr 2024, Accepted 01 Jul 2024, Published online: 10 Jul 2024

References

  • Zhang S, Tan L, Xu K, et al. Characteristics of atmospheric volatile organic compounds and photochemical changes during an O3 event in a county-level city of Shaanxi province. Vol. 234. China, Water: Air, & Soil Pollut; 2023. p. 1–16.
  • Natarajan S, Mukhopadhyay K, Thangaswamy D, et al. Influence of indoor volatile organic compounds and its relative respiratory effects among children living in rural biomass cooking households of Tamil Nadu and Andhra Pradesh. Int Arch Occup Environ Health. 2023;96(8):1183–1201. doi: 10.1007/s00420-023-01998-1
  • Tang L, Liu M, Tian J. Volatile organic compounds exposure associated with depression among U.S. adults: results from NHANES 2011–2020. Chemosphere. 2024;349:140690. doi: 10.1016/j.chemosphere.2023.140690
  • Awasthi A, Sinha B, Hakkim H, et al. Biomass burning sources control ambient particulate matter but traffic and industrial sources control VOCs and secondary pollutant formation during extreme pollution events in Delhi. EGUsphere. 2024;2024:1–35.
  • Li X, Ding D, Xie W, et al. Spatiotemporal variations and source analysis of VOCs in the environmental air of a typical pesticide remediation site. Front Environ Sci. 2023;11:1–12. doi: 10.3389/fenvs.2023.1272836
  • Li J, Wu R, Li Y, et al. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China. Sci Total Environ. 2016;557-558:531–541. doi: 10.1016/j.scitotenv.2016.03.140
  • Liu C. Analysis on the treatment of VOC pollution hazards. In: IOP Conference Series: Earth and Environmental Science; 28-30 May 2021; Qingdao, China. Vol. 791. IOPScience; 2021. p. 012201. doi: 10.1088/1755-1315/791/1/012201
  • Li X, Ma J, Ling X. Design and dynamic behaviour investigation of a novel VOC recovery system based on a deep condensation process. Cryogenics. 2020;107:103060. doi: 10.1016/j.cryogenics.2020.103060
  • Jiang Q, Zhu Q, Duan W, et al. Thermodynamic design and experimental study of a condensation recovery system for VOCs. Appl Therm Eng. 2024;236:121822. doi: 10.1016/j.applthermaleng.2023.121822
  • Belaissaoui B, Le Moullec Y, Favre E. Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air: a generic approach. Energy. 2016;95:291–302. doi: 10.1016/j.energy.2015.12.006
  • Zhu L, Shen D, Luo KH. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. J Hazard Mater. 2020;385:122102. doi: 10.1016/j.jhazmat.2020.122102
  • Li X, Zhang L, Yang Z, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep Purif Technol. 2020;235:116213. doi: 10.1016/j.seppur.2019.116213
  • Sui H, Zhang T, Cui J, et al. Novel off-gas treatment technology to remove volatile organic compounds with high concentration. Ind Eng Chem Res. 2016;55(9):2594–2603. doi: 10.1021/acs.iecr.5b02662
  • Mu M, Zhang X, Yu G, et al. Deep removal of chlorobenzene based volatile organic compounds from exhaust gas with ionic liquids. Sep Purif Technol. 2022;298:121610. doi: 10.1016/j.seppur.2022.121610
  • Li X, Niu Y, Su H, et al. Simple thermocatalytic oxidation degradation of VOCs. Catal Lett. 2021;152(6):1801–1818. doi: 10.1007/s10562-021-03770-x
  • Almaie S, Vatanpour V, Rasoulifard MH, et al. Volatile organic compounds (VOCs) removal by photocatalysts: a review. Chemosphere. 2022;306:135655. doi: 10.1016/j.chemosphere.2022.135655
  • Dobslaw C, Glocker B. Plasma technology and its relevance in waste air and waste gas treatment. Sustainability. 2020;12(21):8981. doi: 10.3390/su12218981
  • Ferdowsi M, Khabiri B, Buelna G, et al. Air biofilters for a mixture of organic gaseous pollutants: an approach for industrial applications. Crit Rev Biotechnol. 2023;43(7):1019–1034. doi: 10.1080/07388551.2022.2100735
  • Gao M, Mao M, Shi J, et al. A review of the treatment techniques of VOC. Appl Math Nonlinear Sci. 2023;8:2063–2074. doi: 10.2478/amns.2021.2.00131
  • Zhang K, Ding H, Pan W, et al. Research progress of a composite metal oxide catalyst for VOC degradation. Environ Sci Technol. 2022;56(13):9220–9236. doi: 10.1021/acs.est.2c02772
  • Yuan X, Peng Y, Zhu X, et al. Anti-poisoning mechanisms of Sb on Vanadia-based catalysts for NOx and chlorobenzene multi-pollutant control. Environ Sci Technol. 2023;57(28):10211–10220. doi: 10.1021/acs.est.3c02844
  • Zhong J, Zeng Y, Chen D, et al. Toluene oxidation over Co(3+)-rich spinel Co(3)O(4): evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS. J Hazard Mater. 2020;386:121957. doi: 10.1016/j.jhazmat.2019.121957
  • Liu B, Ji J, Zhang B, et al. Catalytic ozonation of VOCs at low temperature: a comprehensive review. J Hazard Mater. 2022;422:126847. doi: 10.1016/j.jhazmat.2021.126847
  • Lin F, Xiang L, Zhang Z, et al. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. Crit Rev Environ Sci Technol. 2020;52(3):311–355. doi: 10.1080/10643389.2020.1818490
  • Miran HA, Altarawneh M, Jiang Z-T, et al. Decomposition of selected chlorinated volatile organic compounds by ceria (CeO2). Catal Sci Technol. 2017;7(17):3902–3919. doi: 10.1039/C7CY01096F
  • Zhao H, Han W, Dong F, et al. Highly-efficient catalytic combustion performance of 1,2-dichlorobenzene over mesoporous TiO2–SiO2 supported CeMn oxides: the effect of acid sites and redox sites. J Ind Eng Chem. 2018;64:194–205. doi: 10.1016/j.jiec.2018.03.016
  • Weng X, Long Y, Wang W, et al. Structural effect and reaction mechanism of MnO2 catalysts in the catalytic oxidation of chlorinated aromatics. Chin J Catal. 2019;40(5):638–646. doi: 10.1016/S1872-2067(19)63322-X
  • Lin F, Zhang Z, Li N, et al. How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation. Chem Eng J. 2021;404:126534. doi: 10.1016/j.cej.2020.126534
  • Gao W, Li F, Huo H, et al. Investigation of hollow bimetal oxide nanomaterial and their catalytic activity for selective oxidation of alcohol. Mol Catal. 2018;448:63–70. doi: 10.1016/j.mcat.2018.01.028
  • Nikawa T, Naya S-I, Kimura T, et al. Rapid removal and subsequent low-temperature mineralization of gaseous acetaldehyde by the dual thermocatalysis of gold nanoparticle-loaded titanium(IV) oxide. J Catal. 2015;326:9–14. doi: 10.1016/j.jcat.2015.03.005
  • Shen Z, Gao E, Meng X, et al. Mechanistic insight into catalytic combustion of ethyl acetate on modified CeO2 nanobelts: hydrolysis–oxidation process and shielding effect of acetates/alcoholates. Environ Sci Technol. 2023;57(9):3864–3874. doi: 10.1021/acs.est.2c07991
  • Tílvez E, Cárdenas-Jirón GI, Menéndez MI, et al. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation. Inorg Chem. 2015;54(4):1223–1231. doi: 10.1021/ic501416u
  • Zeng K, Wang Y, Huang C, et al. Catalytic combustion of propane over MnNbOx composite oxides: the promotional role of niobium. Ind Eng Chem Res. 2021;60(17):6111–6120. doi: 10.1021/acs.iecr.1c00699
  • Grant JT, Venegas JM, McDermott WP, et al. Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chem Rev. 2018;118(5):2769–2815. doi: 10.1021/acs.chemrev.7b00236
  • Feng C, Jiang F, Xiong G, et al. Revelation of Mn4+-Osur-Mn3+ active site and combined Langmuir-hinshelwood mechanism in propane total oxidation at low temperature over MnO2. Chem Eng J. 2023;451:138868. doi: 10.1016/j.cej.2022.138868
  • Bui L, Bhan A. Mechanisms for C=C bond cleavage and formation during acrolein production on a mixed metal oxide catalyst. Appl Catal A Gener. 2017;546:87–95. doi: 10.1016/j.apcata.2017.08.011
  • Bui L, Bhan A. A kinetic model for propylene oxidation on a mixed metal oxide catalyst, applied catalysis a. Appl Catal A Gener. 2018;564:1–12. doi: 10.1016/j.apcata.2018.07.004
  • Wu P, Jin X, Qiu Y, et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environ Sci Technol. 2021;55(8):4268–4286. doi: 10.1021/acs.est.0c08179
  • Liu R, Wu H, Shi J, et al. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol. 2022;12(23):6945–6991. doi: 10.1039/D2CY01181F
  • Kim SC, Shim WG. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catalysis B Environ. 2010;98(3–4):180–185. doi: 10.1016/j.apcatb.2010.05.027
  • Piumetti M, Fino D, Russo N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl Catalysis B Environ. 2015;163:277–287. doi: 10.1016/j.apcatb.2014.08.012
  • Bai B, Li J, Hao J. 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol. Appl Catalysis B Environ. 2015;164:241–250. doi: 10.1016/j.apcatb.2014.08.044
  • Chen J, Chen X, Yan D, et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants. Appl Catalysis B Environ. 2019;250:396–407. doi: 10.1016/j.apcatb.2019.03.042
  • Liao W, Zhu W, Lu J, et al. Revealing the equilibrium relationship between lattice oxygen mobility and styrene removal: sources of adsorption and activation by in situ experiments. Appl Surf Sci. 2023;629:157434. doi: 10.1016/j.apsusc.2023.157434
  • Liu L, Liu Y, Liu J, et al. Enhanced catalytic oxidation of toluene over manganese-based multi-metal oxides synthesized by ozone driving redox reaction. Sep Purif Technol. 2022;300:121904. doi: 10.1016/j.seppur.2022.121904
  • Sun L, Cheng Y, Liu Y, et al. Ytterbium modified birnessite MnO2 for improving deep oxidation of toluene. J Rare Earths. 2023;42(4):668–675. doi: 10.1016/j.jre.2023.03.018
  • Xie C, Li L, Zhai X, et al. Improved redox synthesis of Mn–Co bimetallic oxide catalysts using citric acid and their toluene oxidation activity. RSC Adv. 2023;13(16):11069–11080. doi: 10.1039/D3RA01440A
  • Ardakani M, Mahabadi H, Jafari A. Catalytic removal of toluene from air streams by cobalt oxide supported on sepiolite. J Braz Chem Soc. 2019;30:1933–1940. doi: 10.21577/0103-5053.20190106
  • Ren Q, Mo S, Peng R, et al. Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene. J Mater Chem A. 2018;6(2):498–509. doi: 10.1039/C7TA09149D
  • Gao Z, Liu J, Ren Z, et al. Preparation methods of CoxZr1-xO2 catalysts and their properties of oxidizing toluene and formaldehyde. Chin J Inogranic Chem. 2020;36:2340–2348.
  • Li W, Zhang Z, Wang J, et al. Low temperature catalytic combustion of ethylene over cobalt oxide supported mesoporous carbon spheres. Chem Eng J. 2016;293:243–251. doi: 10.1016/j.cej.2016.02.089
  • Feng X, Guo J, Wen X, et al. Enhancing performance of Co/CeO2 catalyst by Sr doping for catalytic combustion of toluene. Appl Surf Sci. 2018;445:145–153. doi: 10.1016/j.apsusc.2018.03.070
  • Li J, Wang F, He C, et al. Catalytic total oxidation of toluene over carbon-supported Cu Co oxide catalysts derived from Cu-based metal organic framework. Powder Technol. 2020;363:95–106. doi: 10.1016/j.powtec.2019.12.060
  • Gil-Barbarin A, Gutiérrez-Ortiz JI, López-Fonseca R, et al. Promotion of cobalt oxide catalysts by acid-etching and ruthenium incorporation for chlorinated VOC oxidation. Ind Eng Chem Res. 2024;63(7):3003–3017. doi: 10.1021/acs.iecr.3c04045
  • Liu P, Liao Y, Li J, et al. Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt oxides for catalytic oxidation of toluene. J Colloid Interface Sci. 2021;594:713–726. doi: 10.1016/j.jcis.2021.03.093
  • Zhang W, Descorme C, Valverde JL, et al. Cu-Co mixed oxide catalysts for the total oxidation of toluene and propane. Catalysis Today, 384-386 (2022:238–245. doi: 10.1016/j.cattod.2021.04.005
  • Guo M, Li K, Liu L, et al. Insight into a sustainable application of spent lithium-ion cobaltate batteries: preparation of a cobalt-based oxide catalyst and its catalytic performance in toluene oxidation. Ind Eng Chem Res. 2019;59(1):194–204. doi: 10.1021/acs.iecr.9b05298
  • Liao Y, He L, Zhao M, et al. Ultrasonic-assisted hydrothermal synthesis of ceria nanorods and their catalytic properties for toluene oxidation. J Environ Chem Eng. 2017;5(5):5054–5060. doi: 10.1016/j.jece.2017.09.037
  • Trovarelli A, Llorca J. Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal. 2017;7(7):4716–4735. doi: 10.1021/acscatal.7b01246
  • Montini T, Melchionna M, Monai M, et al. Fundamentals and catalytic applications of CeO2-based materials. Chem Rev. 2016;116(10):5987–6041. doi: 10.1021/acs.chemrev.5b00603
  • Wang L, Yu Y, He H, et al. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation. Sci Rep. 2017;7(1):12845. doi: 10.1038/s41598-017-13178-6
  • Gao S, Yu D, Zhou S, et al. Construction of cerium-based oxide catalysts with abundant defects/vacancies and their application to catalytic elimination of air pollutants. J Mater Chem A. 2023;11(36):19210–19243. doi: 10.1039/D3TA03310D
  • Li Z, Ma C, Qi M, et al. CeO2 from pyrolysis of MOFs for efficient catalytic combustion of VOCs. Mol Catal. 2023;535:112–857. doi: 10.1016/j.mcat.2022.112857
  • Huang X, Zhang K, Peng B, et al. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal. 2021;11(15):9618–9678. doi: 10.1021/acscatal.1c02443
  • Wang Q, Yeung KL, Bañares MA. Ceria and its related materials for VOC catalytic combustion: a review. Catalysis Today. 2020;356:141–154. doi: 10.1016/j.cattod.2019.05.016
  • Wang Z, Li S, Xie S, et al. Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2-resistance for acetone removal. Appl Catal A Gener. 2019;579:106–115. doi: 10.1016/j.apcata.2019.04.018
  • Yang P, Yang S, Shi Z, et al. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts. Appl Catalysis B Environ. 2015;162:227–235. doi: 10.1016/j.apcatb.2014.06.048
  • Pitkäaho S, Nevanperä T, Matejova L, et al. Oxidation of dichloromethane over Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3–TiO2 and Al2O3–CeO2. Appl Catalysis B Environ. 2013;138-139:33–42. doi: 10.1016/j.apcatb.2013.01.058
  • Peng R, Sun X, Li S, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chem Eng J. 2016;306:1234–1246. doi: 10.1016/j.cej.2016.08.056
  • Wang C, Zhang C, Hua W, et al. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chem Eng J. 2017;315:392–402. doi: 10.1016/j.cej.2017.01.007
  • Zhou J, Zheng Y, Zhang G, et al. Toluene catalytic oxidation over gold catalysts supported on cerium-based high-entropy oxides. Environ Technol. 2023:1–13. doi: 10.1080/09593330.2023.2291418
  • Wang Q, Li Y, Serrano-Lotina A, et al. Operando investigation of toluene oxidation over 1D Pt@CeO2 derived from Pt cluster-containing MOF. J Am Chem Soc. 2020;143(1):196–205. doi: 10.1021/jacs.0c08640
  • Jodłowski PJ, Chlebda D, Piwowarczyk E, et al. In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement. J Mol Struct. 2016;1126:132–140. doi: 10.1016/j.molstruc.2016.02.039
  • Fonzeu Monguen CK, El Kasmi A, Arshad MF, et al. Oxidative dehydrogenation of propane into propene over chromium oxides. Ind Eng Chem Res. 2022;61(13):4546–4560. doi: 10.1021/acs.iecr.2c00813
  • Tanaka HY. Modeling and analysis of disease microenvironments with 3D cell culture technology. Yakugaku Zasshi. 2021;141:647–653.
  • Karaoğlu K, Akçay HT, Özçifçi Z, et al. Mesoporous chromium oxide doped palladium catalysis for cyanation reaction of some aryl halides. Ceram Int. 2021;47(19):27816–27821. doi: 10.1016/j.ceramint.2021.06.208
  • García-Vázquez M, Wang K, González-Carballo JM, et al. Iron and chromium-based oxides for residual methane abatement under realistic conditions: a study on sulfur dioxide poisoning and steam-induced inhibition. Appl Catalysis B Environ. 2020;277:119139. doi: 10.1016/j.apcatb.2020.119139
  • Salaeva AA, Salaev MA, Mamontov GV. Effect of Cu modifier on the performance of CrOx/Al2O3 catalysts for isobutane dehydrogenation. Chem Eng Sci. 2020;215:115462. doi: 10.1016/j.ces.2019.115462
  • Chen X, Chen X, Cai S, et al. Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs. Chem Eng J. 2018;334:768–779. doi: 10.1016/j.cej.2017.10.091
  • Chen X, Chen X, Cai S, et al. MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation. Appl Surf Sci. 2019;475:312–324. doi: 10.1016/j.apsusc.2018.12.277
  • Zhang X, Liu Y, Deng J, et al. Three-dimensionally ordered macroporous Cr2O3−CeO2: high-performance catalysts for the oxidative removal of trichloroethylene. Catalysis Today. 2020;339:200–209. doi: 10.1016/j.cattod.2019.01.071
  • Liu P, Tang H, Shao J, et al. Catalytic ozonation of multi-VOCs mixtures over Cr-based bimetallic oxides catalysts from simulated flue gas: effects of NO/SO2/H2O. Chemosphere. 2023;340:139851. doi: 10.1016/j.chemosphere.2023.139851
  • Hu P, Hu P, Vu TD, et al. Vanadium oxide: phase diagrams, structures, synthesis, and applications. Chem Rev. 2023;123(8):4353–4415. doi: 10.1021/acs.chemrev.2c00546
  • Jung SC, Kim MK, Park YK, et al. Complete oxidation of volatile organic compounds over spent vanadium-based catalyst. J Nanosci Nanotechnol. 2020;20(9):5671–5675. doi: 10.1166/jnn.2020.17649
  • Yu MF, Lin XQ, Li XD, et al. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts. Environ Sci Pollut Res. 2016;23(16):16249–16258. doi: 10.1007/s11356-016-6807-x
  • Andrushkevich TV, Kaichev VV, Chesalov YA, et al. Selective oxidation of ethanol over vanadia-based catalysts: the influence of support material and reaction mechanism. Catalysis Today. 2017;279:95–106. doi: 10.1016/j.cattod.2016.04.042
  • Held A, Kowalska-Kuś J, Nowińska K, et al. Potassium-modified silica-supported vanadium oxide catalysts applied for propene epoxidation. J Catal. 2017;347:21–35. doi: 10.1016/j.jcat.2016.12.001
  • Hu X, Yan X, Feng R, et al. Cracking of n-heptane with activation of vanadium oxide based catalyst: effect of support and modification by K or P. Reac Kinet Mech Cat. 2018;126(1):295–306. doi: 10.1007/s11144-018-1511-0
  • Yu M, Li X, Ren Y, et al. Low temperature oxidation of PCDD/Fs by TiO2-based V2O5/WO3catalyst. Env Prog Sustain Energy. 2016;35(5):1265–1273. doi: 10.1002/ep.12339
  • Lai J, Ma Y, Wu J, et al. The synergistic catalysis of chloroaromatic organics and NOx over monolithic vanadium-based catalysts at low temperature. Catalysts. 2022;12:1342. doi: 10.3390/catal12111342
  • Gan L, Li K, Niu H, et al. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: kinetic study and performance prediction. Front Enviro Sci Eng. 2020;15(4):70. doi: 10.1007/s11783-020-1363-5
  • Sun J, Liu Y, Deng J, et al. PdPty/V2O5-TiO2: highly active catalysts with good moisture- and sulfur dioxide-resistant performance in toluene oxidation. Catalysts. 2022;12:1302. doi: 10.3390/catal12111302
  • Liu X, Wu J, Zhang S, et al. Evaluation of an ε-manganese (IV) oxide/manganese vanadium oxide composite catalyst enriched with oxygen vacancies for enhanced formaldehyde removal. Appl Catalysis B Environ. 2023;320:121994. doi: 10.1016/j.apcatb.2022.121994
  • Xu P, Zhu N, Hou L, et al. Pr-modified vanadia-based catalyst for simultaneous elimination of NO and chlorobenzene. Mol Catal. 2023;548:113430. doi: 10.1016/j.mcat.2023.113430
  • Muangmora R, Kemacheevakul P, Chuangchote S. Titanium dioxide and its modified forms as photocatalysts for air treatment. Curr Analytical Chem. 2021;17(2):185–201. doi: 10.2174/1573411016666200131130152
  • Zhang L, Moralejo C, Anderson WA. A review of the influence of humidity on photocatalytic decomposition of gaseous pollutants on TiO 2 -based catalysts. Can J Chem Eng. 2019;98(1):263–273. doi: 10.1002/cjce.23652
  • Mamaghani AH, Haghighat F, Lee C-S. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catalysis B Environ. 2017;203:247–269. doi: 10.1016/j.apcatb.2016.10.037
  • Pargoletti E, Rimoldi L, Meroni D, et al. Photocatalytic removal of gaseous ethanol, acetaldehyde and acetic acid: from a fundamental approach to real cases. Int Mater Rev. 2022;67(8):864–897. doi: 10.1080/09506608.2021.2017390
  • Haghighi P, Haghighat F. TiO2-based photocatalytic oxidation process for indoor air VOCs removal: a comprehensive review. Building Environ. 2024;249:111108. doi: 10.1016/j.buildenv.2023.111108
  • Basavarajappa PS, Patil SB, Ganganagappa N, et al. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrogen Energy. 2020;45(13):7764–7778. doi: 10.1016/j.ijhydene.2019.07.241
  • Fujimoto TM, Ponczek M, Rochetto UL, et al. Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2 and TiO2/Pd. Environ Sci Pollut Res. 2017;24(7):6390–6396. doi: 10.1007/s11356-016-6494-7
  • Tobaldi DM, Dvoranova D, Lajaunie L, et al. Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment. Chem Eng J. 2021;405:126651. doi: 10.1016/j.cej.2020.126651
  • Marchiori LA, Doubek ULR, Ribeiro BMB, et al. Photodegradation of cyclohexane and toluene using TiO2/UV/O3 in gas phase. Environ Sci Pollut Res. 2019;26(5):4234–4241. doi: 10.1007/s11356-018-2484-2
  • Rangkooy HA, Mokaramian S, Zargar B. Photocatalytic removal of toluene vapour pollutant from the air using titanium dioxide nanoparticles supported on the natural zeolite. Iran J Public Health. 2023;52:184–192. doi: 10.18502/ijph.v52i1.11681
  • Shiraishi F, Iwanaga M, Kitagawa N, et al. Enhancing the photocatalytic decomposition of acetaldehyde in air by immobilized titanium dioxide. J Chem Tech Biotech. 2020;95(7):2034–2044. doi: 10.1002/jctb.6396
  • Bai W, Pakdel E, Wang Q, et al. Synergetic adsorption-photocatalysis process of titania-silica photocatalysts and their immobilization on PEEK nonwoven filter for VOC removal. J Environ Chem Eng. 2022;10(6):108920. doi: 10.1016/j.jece.2022.108920
  • Lai M, Zhao J, Chen Q, et al. Photocatalytic toluene degradation over Bi-decorated TiO2: promoted O2 supply to catalyst’s surface by metallic Bi. Catalysis Today. 2019;335:372–380. doi: 10.1016/j.cattod.2018.12.045
  • Chen J, Chen L, Wang X, et al. Er single atoms decorated TiO2 and Er3+ ions modified TiO2 for photocatalytic oxidation of mixed VOCs. Appl Surf Sci. 2022;596:153655. doi: 10.1016/j.apsusc.2022.153655
  • Tian L, Xing L, Shen X, et al. Visible light enhanced Fe–I–TiO2 photocatalysts for the degradation of gaseous benzene. Atmos Pollut Res. 2020;11:179–185. doi: 10.1016/j.apr.2019.10.005
  • Mioduska J, Zielińska-Jurek A, Hupka J. Photocatalytical degradation of toluene and cyclohexane using LED illumination. Pol J Environ Stud. 2017;26(3):1159–1164. doi: 10.15244/pjoes/67533
  • Wang C, Rao Z, Mahmood A, et al. Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C3N4/Ag-TiO2 composites under visible light. J Colloid Interface Sci. 2021;602:699–711. doi: 10.1016/j.jcis.2021.05.186
  • Zhao J, Sun J, Meng X, et al. Recent advances in vehicle exhaust treatment with photocatalytic technology. Catalysts. 2022;12:1051. doi: 10.3390/catal12091051
  • Zhu C, Liu Y, Cao H, et al. Insight into the influence of morphology of Bi2WO6 for photocatalytic degradation of VOCs under visible light, colloids and surfaces a. Colloids Surfaces A Physicochem Eng Aspects. 2019;568:327–333. doi: 10.1016/j.colsurfa.2019.02.029
  • Kamble GS, Natarajan TS, Patil SS, et al. BiVO4 as a sustainable and emerging photocatalyst: synthesis methodologies, engineering properties, and its volatile organic compounds degradation efficiency. Nanomaterials (Basel). 2023;13:1528. doi: 10.3390/nano13091528
  • Abdellaoui I, Islam MM, Remeika M, et al. Mechanism of incorporation of zirconium into BiVO4 visible-light photocatalyst. J Phys Chem C. 2021;125(6):3320–3326. doi: 10.1021/acs.jpcc.1c00339
  • Fiorenza R, Farina RA, Malannata EM, et al. VOCs photothermo-catalytic removal on MnOx-ZrO2 catalysts. Catalysts. 2022;12:85. doi: 10.3390/catal12010085
  • Fiorenza R, Spitaleri L, Perricelli F, et al. Efficient photocatalytic oxidation of VOCs using ZnO@Au nanoparticles. J Photochem Photobiol A Chem. 2023;434:114232. doi: 10.1016/j.jphotochem.2022.114232
  • Liu B, Hu Z, Zhang B, et al. Deep photocatalytic oxidation of aromatic VOCs on ZnSn LDH: promoting role of electron enrichment of surface hydroxyl. ACS Catal. 2023;13(12):7857–7867. doi: 10.1021/acscatal.3c01045
  • Mountapmbeme Kouotou P, Tian Z-Y. CVD synthesis of cobalt spinel for bio-butanol combustion. Surf Coat Technol. 2017;326:11–17. doi: 10.1016/j.surfcoat.2017.06.026
  • Lee JE, Ok YS, Tsang DCW, et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: a critical review. Sci Total Environ. 2020;719:137405. doi: 10.1016/j.scitotenv.2020.137405
  • Yang C, Miao G, Pi Y, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J. 2019;370:1128–1153. doi: 10.1016/j.cej.2019.03.232
  • Shu Y, Liang S, Xiao J, et al. Phosphate- and Mn-modified mesoporous TiO2 for efficient catalytic oxidation of toluene in VUV-PCO system. Acta Physico (Rome) Sin. 2020;37:2010001–2010000. doi: 10.3866/PKU.WHXB202010001
  • Zhao L, Yang Y, Liu J, et al. Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst. Chemosphere. 2023;330:138754. doi: 10.1016/j.chemosphere.2023.138754
  • Huang H, Xu Y, Feng Q, et al. Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol. 2015;5(5):2649–2669. doi: 10.1039/C4CY01733A
  • Kaichev VV, Gladky AY, Prosvirin IP, et al. In situ XPS study of self-sustained oscillations in catalytic oxidation of propane over nickel. Surf Sci. 2013;609:113–118. doi: 10.1016/j.susc.2012.11.012
  • Zeng Y, Haw KG, Wang Z, et al. Double redox process to synthesize CuO-CeO2 catalysts with strong Cu-Ce interaction for efficient toluene oxidation. J Hazard Mater. 2021;404:124088. doi: 10.1016/j.jhazmat.2020.124088
  • Kim J, Lee JE, Lee HW, et al. Catalytic ozonation of toluene using Mn-M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature. J Hazard Mater. 2020;397:122577. doi: 10.1016/j.jhazmat.2020.122577
  • Lee HJ, Yang JH, You JH, et al. Sea-urchin-like mesoporous copper-manganese oxide catalysts: influence of copper on benzene oxidation. J Ind Eng Chem. 2020;89:156–165. doi: 10.1016/j.jiec.2020.05.005
  • Todorova S, Blin JL, Naydenov A, et al. Co3O4-MnOx oxides supported on SBA-15 for CO and VOCs oxidation. Catalysis Today. 2020;357:602–612. doi: 10.1016/j.cattod.2019.05.018
  • Marin Figueredo MJ, Andana T, Bensaid S, et al. Cerium–copper–manganese oxides synthesized via solution combustion synthesis (SCS) for total oxidation of VOCs. Catal Lett. 2020;150(6):1821–1840. doi: 10.1007/s10562-019-03094-x
  • Hui L, Liu X, Tan Q, et al. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmos Environ. 2020;224:117340. doi: 10.1016/j.atmosenv.2020.117340
  • Li S, Wang D, Wu X, et al. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. Chin J Catal. 2020;41(4):550–560. doi: 10.1016/S1872-2067(19)63446-7
  • Rezaei E, Soltan J, Chen N. Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: effect of catalyst loading. Appl Catalysis B Environ, 136-137 (2013:239–247. doi: 10.1016/j.apcatb.2013.01.061
  • Huang Q, Si H, Yu S, et al. Fabrication of MnOx-CeO2/cordierite catalysts doped with FeOx and CuO for preferable catalytic oxidation of chlorobenzene. Environ Technol. 2018;41(13):1664–1676. doi: 10.1080/09593330.2018.1543359
  • Zhou B, Bai B, Zhu X, et al. Insights into effects of grain boundary engineering in composite metal oxide catalysts for improving catalytic performance. J Colloid Interface Sci. 2024;653:1177–1187. doi: 10.1016/j.jcis.2023.09.148
  • Xiang G, Wang Y. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling. Nano Res. 2021;15(4):3812–3817. doi: 10.1007/s12274-021-3910-1
  • Jiang M, Wu Q, Yan J, et al. Si-doped Al2O3 nanosheet supported Pd for catalytic combustion of propane: effects of Si doping on morphology, thermal stability, and water resistance. Environ Sci Pollut Res. 2021;28(40):56480–56490. doi: 10.1007/s11356-021-14646-3
  • Yang J, Huang Y, Chen Y, et al. Active site-directed tandem catalysis on CuO/VO-MnO2 for efficient and stable catalytic ozonation of S-VOCs under mild condition. Nano Today. 2020;35:100944. doi: 10.1016/j.nantod.2020.100944
  • He C, Cheng J, Zhang X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev. 2019;119(7):4471–4568. doi: 10.1021/acs.chemrev.8b00408
  • Li J, Yang X, Ma C, et al. Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction. Appl Catalysis B Environ. 2021;291:120–153. doi: 10.1016/j.apcatb.2021.120053
  • Wang J, Shi Z, Zhou R. High activity of CeO2-TiO2 composites for deep oxidation of 1,2-dichloroethane. J Rare Earths. 2020;38(8):906–911. doi: 10.1016/j.jre.2019.11.015