28,344
Views
93
CrossRef citations to date
0
Altmetric
Original Article

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus

, , , &
Pages 105-109 | Received 20 Feb 2020, Accepted 09 Jul 2020, Published online: 23 Jul 2020

References

  • Pinheiro ET, Gomes BP, Ferraz CC, et al. Microorganisms from canals of rootfilled teeth with periapical lesions. Int Endod J. 2003;36(1):1–11.
  • McCormack MG, Smith AJ, Akram AN, et al. Staphylococcus aureus and the oral cavity: an overlooked source of carriage and infection?. Am J Infect Control. 2015;43(1):35–37.
  • Jhajharia K, Parolia A, Shetty KV, et al. Biofilm in endodontics: a review. J Int Soc Prev Community Dent. 2015;5(1):1–12.
  • Shah S, Venkataraghavan K, Choudhary P, et al. Evaluation of antimicrobial effect of azadirachtin plant extract (Soluneem (™)) on commonly found root canal pathogenic microorganisms (viz. Enterococcus faecalis) in primary teeth: a microbiological study. J Indian Soc Pedod Prev Dent. 2016;34(3):210–216.
  • Velazquez-Meza ME. Staphylococcus aureus methicillin-resistant: emergence and dissemination. Salud Publica Mex. 2005;47:381–387. ].
  • Austin ED, Sullivan SS, Macesic N, et al. Reduced mortality of Staphylococcus aureus bacteremia in a retrospective cohort study of 2139 patients: 2007–2015. Clin Infect Dis. 2020;70(8):1666–1674.
  • Li Y, Leung P, Yao L, et al. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006;62(1):58–63.
  • Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:6.
  • Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668.
  • Ha-Hymn Y, Hye-Kyoung J, Young-Jung J, et al. Enterococcus faecalis activates caspase-1 leading to increased interleukin-1 beta secretion in macrophages. J Endod. 2014;40(10):1587–1592.
  • Estrela C, Rodrigues de Araújo Estrela C, Bammann LL, et al. Two methods to evaluate the antimicrobial action of calcium hydroxide paste. J Endod. 2001;27(12):720–723.
  • Shweta , Prakash SK. Dental abscess: a microbiological review. Dent Res J. 2013;10(5):585–591.
  • Haapasalo M, Udnaes T, Endal U. Persistent, recurrent, and acquired infection of the root canal system post-treatment. Endodontic Topics. 2003;6(1):29–56.
  • Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1–12.
  • Matsumura Y, Yoshikata K, Kunisaki S, et al. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69(7):4278–4281.
  • Lok CN, Ho CM, Chen R, et al. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem. 2007;12(4):527–534.
  • Doty C, Tshikhudo R, Brust M, et al. Extremely stable water-soluble Ag nanoparticles. Chem Mater. 2005;17(18):4630–4635.
  • Makkar S, Aggarwal A, Pasricha S, et al. To evaluate the antibacterial properties of silver nano particle based irrigant as endodontic root canal irrigant. Int J Dent Health Sci. 2014;1(4):485–492.
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–2353.
  • Zhou Y, Kong Y, Kundu S, et al. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol. 2012;10(1):19.
  • Loo YY, Rukayadi Y, Nor-Khaizura M-A-R, et al. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborn pathogens. Front Microbiol. 2018;9(1555):1–7.
  • Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2(1):32.
  • Vanesa Ayala-Núñez N, Lara Villegas HH, del Carmen Ixtepan Turrent L, et al. Silver nanoparticles toxicity and bactericidal effectagainst methicillin-resistantstaphylococcusaureus: Nanoscale does matter. Nanobiotechnol. 2009;5(1–4):2–9.
  • Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4(8):3974–3983.
  • Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, et al. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology. 2011;9:30.
  • Corrêa JM, Mori M, Sanches HL, et al. Silver nanoparticles in dental biomaterials. Int J Biomater .2015;2015:1–9.  
  • Ip M, Lui SL, Poon VK, et al. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55(Pt 1):59–63.
  • Ellis DH, Maurer-Gardner EI, Sulentic CEW, et al. Silver nanoparticle antibacterial efficacy and resistance development in key bacterial species. Biomed Phys Eng Express. 2018;5(1):015013.
  • Hosny A, Rasmy SA, Aboul-Magd DS, et al. The increasing threat of silver-resistance in clinical isolates from wounds and burns. Infect Drug Resist. 2019;12:1985–2001.
  • Kaweeteerawat C, Na Ubol P, Sangmuang S, et al. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J Toxicol Environ Health. 2017;80:23–24.
  • Barros CHN, Fulaz S, Stanisic D, et al. Biogenic nanosilver against multidrug-resistant bacteria (MDRB). Antibiotics. 2018;7(3):69.
  • Drake PL, Hazelwood KJ. Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg. 2005;49(7):575–585.
  • Prasher P, Singh M, Mudila H. Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3 Biotech. 2018;8(10):411.