6,485
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Barrier membranes for tissue regeneration in dentistry

, , , , , & show all
Pages 54-63 | Received 01 Feb 2021, Accepted 29 Apr 2021, Published online: 20 May 2021

References

  • Hämmerle CHF, Jung RE. Bone augmentation by means of barrier membranes. Periodontol 2000. 2003;33:36–53.
  • Khojasteh A, Kheiri L, Motamedian SR, et al. Guided bone regeneration for the reconstruction of alveolar bone defects. Ann Maxillofac Surg. 2017;7(2):263–277.
  • Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–337.
  • Nyman S, Lindhe J, Karring T, et al. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982;9(4):290–296.
  • Murphy KG, Gunsolley JC. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann Periodontol. 2003;8(1):266–302.
  • Faria-Almeida R, Astramskaite-Januseviciene I, Puisys A, et al. Extraction socket preservation with or without membranes, soft tissue influence on post extraction alveolar ridge preservation: A systematic review. J Oral Maxillofac Res. 2019;10:e5.
  • Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27–37.
  • Liu J, Kerns DG. Mechanisms of guided bone regeneration: A review. Open Dent J. 2014;8:56–65.
  • Hoornaert A, d'Arros C, Heymann MF, et al. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration. Biomed Mater. 2016;11(4):045012.
  • Caballé-Serrano J, Sawada K, Miron RJ, et al. Collagen barrier membranes adsorb growth factors liberated from autogenous bone chips. Clin Oral Impl Res. 2017;28(2):236–241.
  • Pelissier P, Masquelet AC, Bareille R, et al. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22(1):73–79.
  • Viateau V, Guillemin G, Calando Y, et al. Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: An ovine model. Vet Surgery. 2006;35(5):445–452.
  • Gottlow J. Guided tissue regeneration using bioresorbable and non-resorbable devices: Initial healing and long-term results. J Periodontol. 1993;64(11s):1157–1165.
  • Retzepi M, Donos N. Guided bone regeneration: Biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21(6):567–576.
  • Moses O, Pitaru S, Artzi Z, et al. Healing of dehiscence-type defects in implants placed together with different barrier membranes: A comparative clinical study. Clin Oral Implants Res. 2005;16(2):210–219.
  • Caballe-Serrano J, Munar-Frau A, Ortiz-Puigpelat O, et al. On the search of the ideal barrier membrane for guided bone regeneration. J Clin Exp Dent. 2018;10:e477–e483.
  • Florjanski W, Orzeszek S, Olchowy A, et al. Modifications of polymeric membranes used in guided tissue and bone regeneration. Polymers. 2019;11(5):782.
  • Meinig RP. Clinical use of resorbable polymeric membranes in the treatment of bone defects. Orthop Clin North Am. 2010;41(1):39–47.
  • Wiltfang J, Merten HA, Peters JH. Comparative study of guided bone regeneration using absorbable and permanent barrier membranes: A histologic report. Int J Oral Maxillofac Implants. 1998;13(3):416–421.
  • Dimitriou R, Mataliotakis GI, Calori GM, et al. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: Current experimental and clinical evidence. BMC Med. 2012;10:81.
  • Kaushal S, Kumar A, Khan MA, et al. Comparative study of nonabsorbable and absorbable barrier membranes in periodontal osseous defects by guided tissue regeneration. J Oral Biol Craniofac Res. 2016;6(2):111–117.
  • Soldatos NK, Stylianou P, Koidou VP, et al. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017;48(2):131–147.
  • Bergsma JE, Rozema FR, Bos RR, et al. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles. Biomaterials. 1995;16(4):267–274.
  • Evans GH, Yukna RA, Cambre KM, et al. Clinical regeneration with guided tissue barriers. Curr Opin Periodontol. 1997;4:75–81.
  • Murphy KG. Postoperative healing complications associated with Gore-Tex periodontal material. Part I. Incidence and characterization. Int J Periodontics Restorative Dent. 1995;15(4):363–375.
  • Murphy KG. Postoperative healing complications associated with Gore-Tex periodontal material. Part II. Effect of complications on regeneration. Int J Periodontics Restorative Dent. 1995;15(6):548–561.
  • Machtei EE. The effect of membrane exposure on the outcome of regenerative procedures in humans: A meta-analysis. J Periodontol. 2001;72(4):512–516.
  • Leinonen S, Suokas E, Veiranto M, et al. Holding power of bioabsorbable ciprofloxacin-containing self-reinforced poly-L/DL-lactide 70/30 bioactive glass 13 miniscrews in human cadaver bone. J Craniofac Surg. 2002;13:212–218.
  • Chasioti E, Chiang TF, Drew HJ. Maintaining space in localized ridge augmentation using guided bone regeneration with tenting screw technology. Quintessence Int. 2013;44(10):763–771.
  • Simion M, Baldoni M, Rossi P, et al. A comparative study of the effectiveness of e-PTFE membranes with and without early exposure during the healing period. Int J Periodontics Restorative Dent. 1994;14(2):166–180.
  • Aaboe M, Pinholt EM, Hjørting-Hansen E. Healing of experimentally created defects: A review. Br J Oral Maxillofac Surg. 1995;33(5):312–318.
  • Trobos M, Juhlin A, Shah FA, et al. In vitro evaluation of barrier function against oral bacteria of dense and expanded polytetrafluoroethylene (PTFE) membranes for guided bone regeneration. Clin Implant Dent Relat Res. 2018;20(5):738–748.
  • Kohal RJ, Trejo PM, Wirsching C, et al. Comparison of bioabsorbable and bioinert membranes for guided bone regeneration around non-submerged implants. An experimental study in the mongrel dog. Clin Oral Implants Res. 1999;10(3):226–237.
  • Korzinskas T, Jung O, Smeets R, et al. In vivo analysis of the biocompatibility and macrophage response of a non-resorbable PTFE membrane for guided bone regeneration. Int J Mol Sci. 2018;19(10):2952.
  • Chiapasco M, Zaniboni M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: A systematic review. Clin Oral Implants Res. 2009;20:113–123.
  • Garcia J, Dodge A, Luepke P, et al. Effect of membrane exposure on guided bone regeneration: A systematic review and meta-analysis. Clin Oral Implants Res. 2018;29(3):328–338.
  • Gallo P, Díaz-Báez D. Management of 80 complications in vertical and horizontal ridge augmentation with nonresorbable membrane (d-PTFE): A cross-sectional study. Int J Oral Maxillofac Implants. 2019;34(4):927–935.
  • Ronda M, Rebaudi A, Torelli L, et al. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: A prospective randomized controlled clinical trial. Clin Oral Impl Res. 2014;25(7):859–866.
  • An SH, Matsumoto T, Sasaki JI, et al. In vitro bioactivity evaluation of nano- and micro-crystalline anodic TiO2: HA formation, cellular affinity and organ culture. Mater Sci Eng C Mater Biol Appl. 2012;32(8):2516–2522.
  • Gavini G, Santos MD, Caldeira CL, et al. Nickel-titanium instruments in endodontics: A concise review of the state of the art. Braz Oral Res. 2018;32(suppl 1):e67.
  • García-Martínez E, Miguel V, Martínez-Martínez A, et al. Sustainable lubrication methods for the machining of titanium alloys: An overview. Materials. 2019;12(23):3852.
  • Karre R, Kodli BK, Rajendran A, et al. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application. Mater Sci Eng C Mater Biol Appl. 2019;94:619–627.
  • Wang RR, Fenton A. Titanium for prosthodontic applications: A review of the literature. Quintessence Int. 1996;27:401–408.
  • Ottria L, Lauritano D, Andreasi BM, et al. Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry. J Biol Regul Homeost Agents. 2018;32(2 Suppl. 1):81–90.
  • An SH, Matsumoto T, Miyajima H, et al. Surface characterization of alkali- and heat-treated Ti with or without prior acid etching. Appl Surf Sci. 2012;258(10):4377–4382.
  • Hanawa T. Titanium-tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol. 2019;17(7):170.
  • Boyne PJ, Cole MD, Stringer D, et al. A technique for osseous restoration of deficient edentulous maxillary ridges. J Oral Maxillofac Surg. 1985;43(2):87–91.
  • Roehling S, Schlegel KA, Woelfler H, et al. Zirconia compared to titanium dental implants in preclinical studies-A systematic review and meta-analysis. Clin Oral Implants Res. 2019;30(5):365–395.
  • Jurczak P, Witkowska J, Rodziewicz-Motowidło S, et al. Proteins, peptides and peptidomimetics as active agents in implant surface functionalization. Adv Colloid Interface Sci. 2020;276:102083.
  • Li J, Jansen JA, Walboomers XF, et al. Mechanical aspects of dental implants and osseointegration: A narrative review. J Mech Behav Biomed Mater. 2020;103:103574.
  • Zablotsky M, Meffert R, Caudill R, et al. Histological and clinical comparisons of guided tissue regeneration on dehisced hydroxylapatite-coated and titanium endosseous implant surfaces: A pilot study. Int J Oral Maxillofac Implants. 1991;6(3):294–303.
  • Sumi Y, Miyaishi O, Tohnai I, et al. Alveolar ridge augmentation with titanium mesh and autogenous bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(3):268–270.
  • Degidi M, Scarano A, Piattelli A. Regeneration of the alveolar crest using titanium micromesh with autologous bone and a resorbable membrane. J Oral Implantol. 2003;29(2):86–90.
  • Rakhmatia YD, Ayukawa Y, Furuhashi A, et al. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57(1):3–14.
  • Hasegawa H, Masui S, Ishihata H. New microperforated pure titanium membrane created by laser processing for guided regeneration of bone. Br J Oral Maxillofac Surg. 2018;56(7):642–643.
  • Decco O, Cura A, Beltrán V, et al. Bone augmentation in rabbit tibia using microfixed cobalt-chromium membranes with whole blood, tricalcium phosphate and bone marrow cells. Int J Clin Exp Med. 2015;8(1):135–144.
  • Lin WC, Yao C, Huang TY, et al. Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dent Mater. 2019;35(5):751–762.
  • Eliaz N. Corrosion of metallic biomaterials: A review. Materials. 2019;12(3):407.
  • Vert M. Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules. 2005;6(2):538–546.
  • Sam G, Pillai BR. Evolution of barrier membranes in periodontal regeneration-"Are the third generation membranes really here?". J Clin Diagn Res. 2014;8(12):ZE14–ZE17.
  • Bottino MC, Pankajakshan D, Nör JE. Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin North Am. 2017;61(4):689–711.
  • Döri F, Huszár T, Nikolidakis D, et al. Effect of platelet-rich plasma on the healing of intra-bony defects treated with a natural bone mineral and a collagen membrane. J Clin Periodontol. 2007;34(3):254–261.
  • Hoogeveen EJ, Gielkens PF, Schortinghuis J, et al. Vivosorb as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography. Int J Oral Maxillofac Surg. 2009;38(8):870–875.
  • Gielkens PF, Schortinghuis J, de Jong JR, et al. Vivosorb, Bio-Gide, and Gore-Tex as barrier membranes in rat mandibular defects: An evaluation by microradiography and micro-CT. Clin Oral Implants Res. 2008;19(5):516–521.
  • Wang J, Wang L, Zhou Z, et al. Biodegradable polymer membranes applied in guided bone/tissue regeneration: A review. Polymers. 2016;8(4):115.
  • Wessing B, Lettner S, Zechner W. Guided bone regeneration with collagen membranes and particulate graft materials: A systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018;33(1):87–100.
  • Wang Z, Liang R, Jiang X, et al. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs). Mater Sci Eng C Mater Biol Appl. 2019;104:109796.
  • Patino MG, Neiders ME, Andreana S, et al. Collagen: An overview. Implant Dent. 2002;11(3):280–285.
  • Sasaki JI, Matsumoto T, Egusa H, et al. In vitro engineering of transitional tissue by patterning and functional control of cells in fibrin gel. Soft Matter. 2010;6(8):1662–1667.
  • Sasaki J, Matsumoto T, Egusa H, et al. In vitro reproduction of endochondral ossification using a 3D mesenchymal stem cell construct. Integr Biol (Camb). 2012;4(10):1207–1214.
  • Sbricoli L, Guazzo R, Annunziata M, et al. Selection of collagen membranes for bone regeneration: A literature review. Materials. 2020;13(3):786.
  • Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration–A materials perspective. Dent Mater. 2012;28(7):703–721.
  • Kozlovsky A, Aboodi G, Moses O, et al. Bio-degradation of a resorbable collagen membrane (Bio-Gide) applied in a double-layer technique in rats. Clin Oral Implants Res. 2009;20(10):1116–1123.
  • Ferreira AM, Gentile P, Chiono V, et al. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–3200.
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8-9):762–798.
  • Zitzmann NU, Naef R, Schärer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997;12:844–852.
  • Bunyaratavej P, Wang HL. Collagen membranes: A review. J Periodontol. 2001;72(2):215–229.
  • Turri A, Elgali I, Vazirisani F, et al. Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials. 2016;84:167–183.
  • Gueldenpfennig T, Houshmand A, Najman S, et al. The condensation of collagen leads to an extended standing time and a decreased pro-inflammatory tissue response to a newly developed pericardium-based barrier membrane for guided bone regeneration. In Vivo. 2020;34(3):985–1000.
  • Ishikawa K, Ueyama Y, Mano T, et al. Self-setting barrier membrane for guided tissue regeneration method: Initial evaluation of alginate membrane made with sodium alginate and calcium chloride aqueous solutions. J Biomed Mater Res. 1999;47(2):111–115.
  • Ueyama Y, Ishikawa K, Mano T, et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials. 2002;23(9):2027–2033.
  • He H, Huang J, Ping F, et al. Calcium alginate film used for guided bone regeneration in mandible defects in a rabbit model. Cranio. 2008;26(1):65–70.
  • Ma S, Adayi A, Liu Z, et al. Asymmetric collagen/chitosan membrane containing minocycline-loaded chitosan nanoparticles for guided bone regeneration. Sci Rep. 2016;6(1):31822.
  • Zhou T, Liu X, Sui B, et al. Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. Biomed Mater. 2017;12(5):055004.
  • Wu C, Su H, Karydis A, et al. Mechanically stable surface-hydrophobilized chitosan nanofibrous barrier membranes for guided bone regeneration. Biomed Mater. 2017;13(1):015004.
  • Huang D, Niu L, Li J, et al. Reinforced chitosan membranes by microspheres for guided bone regeneration. J Mech Behav Biomed Mater. 2018;81:195–201.
  • Shah AT, Zahid S, Ikram F, et al. Tri-layered functionally graded membrane for potential application in periodontal regeneration. Mater Sci Eng C Mater Biol Appl. 2019;103:109812.
  • Tharanathan RN, Kittur FS. Chitin–the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr. 2003;43(1):61–87.
  • Catoira MC, Fusaro L, Di Francesco D, et al. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10):115.
  • Sultankulov B, Berillo D, Sultankulova K, et al. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules. 2019;9(9):470.
  • De Masi A, Tonazzini I, Masciullo C, et al. Chitosan films for regenerative medicine: Fabrication methods and mechanical characterization of nanostructured chitosan films. Biophys Rev. 2019;11(5):807–815.
  • Lauritano D, Limongelli L, Moreo G, et al. Nanomaterials for periodontal tissue engineering: Chitosan-based scaffolds. A systematic review. Nanomaterials. 2020;10(4):605.
  • Szabó L, Gerber-Lemaire S, Wandrey C. Strategies to functionalize the anionic biopolymer Na-alginate without restricting its polyelectrolyte properties. Polymers. 2020;12(4):919.
  • Abasalizadeh F, Moghaddam SV, Alizadeh E, et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng. 2020;14:8.
  • Geurs NC, Korostoff JM, Vassilopoulos PJ, et al. Clinical and histologic assessment of lateral alveolar ridge augmentation using a synthetic long-term bioabsorbable membrane and an allograft. J Periodontol. 2008;79(7):1133–1140.
  • Annunziata M, Nastri L, Cecoro G, et al. The use of Poly-d,l-lactic acid (PDLLA) devices for bone augmentation techniques: A systematic review. Molecules. 2017;22(12):2214.
  • Yoshimoto I, Sasaki JI, Tsuboi R, et al. Development of layered PLGA membranes for periodontal tissue regeneration. Dent Mater. 2018;34(3):538–550.
  • Haghighat A, Shakeri S, Mehdikhani M, et al. Histologic, histomorphometric, and osteogenesis comparative study of a novel fabricated nanocomposite membrane versus cytoplast membrane. J Oral Maxillofac Surg. 2019;77(10):2027–2039.
  • Zhang HY, Jiang HB, Ryu JH, et al. Comparing properties of variable pore-sized 3D-printed PLA membrane with conventional PLA membrane for guided bone/tissue regeneration. Materials. 2019;12(10):1718.
  • Abe GL, Sasaki JI, Katata C, et al. Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application. Dent Mater. 2020;36(5):626–634.
  • Zamboulis A, Nakiou EA, Christodoulou E, et al. Polyglycerol hyperbranched polyesters: Synthesis, properties and pharmaceutical and biomedical applications. Int J Mol Sci. 2019;20(24):6210.
  • Chi M, Qi M, A L, et al. Novel bioactive and therapeutic dental polymeric materials to inhibit periodontal pathogens and biofilms. Int J Mol Sci . 2019;20(2):278.
  • Caballero Aguilar LM, Silva SM, Moulton SE. Growth factor delivery: Defining the next generation platforms for tissue engineering. J Control Release. 2019;306:40–58.
  • Tsuboi R, Abe GL, Kitagawa H, et al. Barrier effects of new bilayer GBR membrane against bacteria invasion. 2020 IADR/AADR/CADR General Session (Washington, D.C., USA). 2020. Abstract. No. 2506.
  • Shim JH, Huh JB, Park JY, et al. Fabrication of blended polycaprolactone/poly(lactic-co-glycolic acid)/beta-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration. Tissue Eng Part A. 2013;19(3-4):317–328.
  • Verissimo DM, Leitao RF, Figueiro SD, et al. Guided bone regeneration produced by new mineralized and reticulated collagen membranes in critical-sized rat calvarial defects. Exp Biol Med. 2015;240:175–184.
  • Basile MA, d'Ayala GG, Malinconico M, et al. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2015;48:457–468.
  • Ezati M, Safavipour H, Houshmand B, et al. Development of a PCL/gelatin/chitosan/beta-TCP electrospun composite for guided bone regeneration. Prog Biomater. 2018;7(3):225–237.
  • Matsumoto T, Okazaki M, Nakahira A, et al. Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr Med Chem. 2007;14(25):2726–2733.
  • Elgali I, Turri A, Xia W, et al. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomater. 2016;29:409–423.
  • Guillaume B. Filling bone defects with beta-TCP in maxillofacial surgery: A review. Morphologie. 2017;101(334):113–119.
  • Rh Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res. 2018;106(6):2493–2512.
  • Iviglia G, Kargozar S, Baino F. Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration. JFB. 2019;10(1):3.
  • Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–1017.
  • Miguez-Pacheco V, Hench LL, Boccaccini AR. Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1–15.
  • Sasaki JI, Kiba W, Abe GL, et al. Fabrication of strontium-releasable inorganic cement by incorporation of bioactive glass. Dent Mater. 2019;35(5):780–788.
  • Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7(6):2355–2373.
  • Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757–2774.
  • Hong KS, Kim EC, Bang SH, et al. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res A. 2010;94(4):1187–1194.
  • Leal AI, Caridade SG, Ma J, et al. Asymmetric PDLLA membranes containing Bioglass for guided tissue regeneration: Characterization and in vitro biological behavior. Dent Mater. 2013;29(4):427–436.