556
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Topological aspects in the microstructural evolution of AA6082 during hot plastic deformation

ORCID Icon, &
Article: 2218403 | Received 31 Jan 2022, Accepted 12 Sep 2022, Published online: 19 Oct 2022

References

  • Aoyagi, Y., Kobayashi, R., Kaji, Y., & Shizawa, K. (2013). Modeling and simulation on ultrafine-graining based on multiscale crystal plasticity considering dislocation patterning. International Journal of Plasticity, 47, 13–28. doi:10.1016/j.ijplas.2012.12.007
  • Blum, W., Zhu, Q., Merkel, R., & McQueen, H. J. (1996). Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083). Materials Science and Engineering A, 205(1–2), 23–30. doi:10.1016/0921-5093(95)09990-5
  • Buzolin, R. H., Ferraz, F. M. B., Lasnik, M., Krumphals, A., & Poletti, M. C. (2020). Improved predictability of microstructure evolution during hot deformation of titanium alloys. Materials (Basel), 13(24), 5678–30. doi:10.3390/ma13245678
  • Buzolin, R. H., Lasnik, M., Krumphals, A., & Poletti, M. C. (2021a). Hot deformation and dynamic α-globularization of a Ti-17 alloy: Consistent physical model. Materials and Design, 197, 109266. doi:10.1016/j.matdes.2020.109266
  • Buzolin, R. H., Lasnik, M., Krumphals, A., & Poletti, M. C. (2021b). A dislocation-based model for the microstructure evolution and the flow stress of a Ti5553 alloy. International Journal of Plasticity, 136, 102862. doi:10.1016/j.ijplas.2020.102862
  • Canelo-Yubero, D., Kovács, Z., Simonet Fotso, J. F. T., Tolnai, D., Schell, N., Groma, I., & Poletti, C. (2020). In-situ characterization of continuous dynamic recrystallization during hot torsion of an Al–Si–Mg alloy. Journal of Alloys and Compounds, 822, 153282. doi:10.1016/j.jallcom.2019.153282
  • Castelluccio, G. M., & McDowell, D. L. (2017). Mesoscale cyclic crystal plasticity with dislocation substructures. International Journal of Plasticity, 98, 1–26. doi:10.1016/j.ijplas.2017.06.002
  • Chamanfar, A., Alamoudi, M. T., Nanninga, N. E., & Misiolek, W. Z. (2019). Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099). Materials Science and Engineering: A, 743, 684–696. doi:10.1016/j.msea.2018.11.076
  • Dirras, G. F., Duval, J.-L., & Swiatnicki, W. (1999). Macroscopic behaviour versus dislocation substructures development under cyclic shear tests on the aluminium–3004 alloy. Materials Science and Engineering: A, 263(1), 85–95. doi:10.1016/S0921-5093(98)01082-X
  • Gao, Z., Feng, J., Wang, Z., Niu, J., & Sommitsch, C. (2019). Dislocation Density-Based Modeling of Dynamic Recrystallized Microstructure and Process in Friction Stir Spot Welding of AA6082. Metals (Basel), 9(6), 672. doi:10.3390/met9060672
  • Gholinia, A., Prangnell, P. B., & Markushev, M. V. (2000). The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Materialia, 48(5), 1115–1130. doi:10.1016/S1359-6454(99)00388-2
  • Ghoniem, N. M., Matthews, J. R., & Amodeo, R. J. (1990). Dislocation model for creep in engineering materials. Res Mechanica, 29, 197–219.
  • Goetz, R. L., & Semiatin, S. L. (2001). The adiabatic correction factor for deformation heating during the uniaxial compression test. Journal of Materials Engineering and Performance, 10(6), 710–717. doi:10.1361/105994901770344593
  • Gourdet, S., & Montheillet, F. (2000). An experimental study of the recrystallization mechanism during hot deformation of aluminium. Materials Science and Engineering: A, 283(1–2), 274–288. doi:10.1016/S0921-5093(00)00733-4
  • Gourdet, S., & Montheillet, F. (2002). Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals. Acta Materialia, 50(11), 2801–2812. doi:10.1016/S1359-6454(02)00098-8
  • Gourdet, S., & Montheillet, F. (2003). A model of continuous dynamic recrystallization. Acta Materialia, 51(9), 2685–2699. doi:10.1016/S1359-6454(03)00078-8
  • Hansen, B. L., Beyerlein, I. J., Bronkhorst, C. A., Cerreta, E. K., & Dennis-Koller, D. (2013). A dislocation-based multi-rate single crystal plasticity model. International Journal of Plasticity, 44, 129–146. doi:10.1016/j.ijplas.2012.12.006
  • Huang, K., & Logé, R. E. (2016). A review of dynamic recrystallization phenomena in metallic materials. Materials and Design, 111, 548–574. doi:10.1016/j.matdes.2016.09.012
  • Humphreys, F. J., & Hatherly, M. (2004). Recrystallization and related annealing phenomena. New York, NY: Elsevier.
  • Khan, A. S., & Liang, R. (1999). Behaviors of three BCC metal over a wide range of strain rates and temperatures: Experiments and modeling. International Journal of Plasticity, 15(10), 1089–1109. doi:10.1016/S0749-6419(99)00030-3
  • Li, S., Zhao, Q., Liu, Z., & Li, F. (2018). A review of texture evolution mechanisms during deformation by rolling in aluminum alloys. Journal of Materials Engineering and Performance, 27(7), 3350–3373. doi:10.1007/s11665-018-3439-y
  • Ma, A., Roters, F., & Raabe, D. (2006). A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Materialia, 54(8), 2169–2179. doi:10.1016/j.actamat.2006.01.005
  • Maire, L., Fausty, J., Bernacki, M., Bozzolo, N., De Micheli, P., & Moussa, C. (2018). A new topological approach for the mean field modeling of dynamic recrystallization. Materials and Design, 146, 194–207. doi:10.1016/j.matdes.2018.03.011
  • Martorano, M. A., & Padilha, A. F. (2008). Modelling grain boundary migration during geometric dynamic recrystallization. Philosophical Magazine Letters, 88(9–10), 725–734. doi:10.1080/09500830802286951
  • Mason, J. K., & Schuh, C. A. (2009). The generalized Mackenzie distribution: Disorientation angle distributions for arbitrary textures. Acta Materialia, 57(14), 4186–4197. doi:10.1016/j.actamat.2009.05.016
  • McQueen, H. J., & Kassner, M. E. (2004). Comments on [`]a model of continuous dynamic recrystallization’ proposed for aluminum. Scripta Materialia, 51(5), 461–465. doi:10.1016/j.scriptamat.2004.05.027
  • Pérocheau, F., & Driver, J. H. (2000). Texture gradient simulations for extrusion and reversible rolling of FCC metals. International Journal of Plasticity, 16(1), 73–89. doi:10.1016/S0749-6419(99)00048-0
  • Pettersen, T., & Nes, E. (2003). On the origin of strain softening during deformation of aluminum in torsion to large strains. Metallurgical and Materials Transactions A, 34(12), 2727–2736. doi:10.1007/s11661-003-0174-1
  • Poletti, C., Bureau, R., Loidolt, P., Simon, P., Mitsche, S., & Spuller, M. (2018). Microstructure evolution in a 6082 aluminium alloy during thermomechanical treatment. Materials (Basel, Switzerland), 11(8), 1319. doi:10.3390/ma11081319
  • Poletti, C., Wójcik, T., & Sommitsch, C. (2013). Hot deformation of AA6082 containing fine intermetallic particles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 44, 1577–1586. doi:10.1007/s11661-012-1487-8
  • Poletti, M. C., Simonet-Fotso, T., Halici, D., Canelo-Yubero, D., Montheillet, F., Piot, D., … Tolnai, D. (2019). Continuous dynamic recrystallization during hot torsion of an aluminum alloy. Journal of Physics: Conference Series, 1270(1), 012049. doi:10.1088/1742-6596/1270/1/012049
  • Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., & Jonas, J. J. (2014). Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 60, 130–207. doi:10.1016/j.pmatsci.2013.09.002
  • Shanthraj, P., & Zikry, M. A. (2011). Dislocation density evolution and interactions in crystalline materials. Acta Materialia, 59(20), 7695–7702. doi:10.1016/j.actamat.2011.08.041
  • Souza, P. M., Beladi, H., Singh, R. P., Hodgson, P. D., & Rolfe, B. (2018). An analysis on the constitutive models for forging of Ti6Al4V alloy considering the softening behavior. Journal of Materials Engineering and Performance, 27(7), 3545–3558. doi:10.1007/s11665-018-3402-y
  • Yan, L., Shen, J., Li, Z., Li, J., & Yan, X. (2010). Microstructure evolution of Al-Zn-Mg-Cu-Zr alloy during hot deformation. Rare Metals, 29(4), 426–432. doi:10.1007/s12598-010-0143-y
  • Zeng, X., Fan, X. G., Li, H. W., Zhan, M., & Li, S. H. (2019). Grain morphology related microstructural developments in bulk deformation of 2219 aluminum alloy sheet at elevated temperature. Materials Science and Engineering: A, 760, 328–338. doi:10.1016/j.msea.2019.06.022