193
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of chlorohexidine-coated cotton filler addition on resin-based fissure sealants’ mechanical, water sorption, and antibacterial properties

, , , &
Article: 2336225 | Received 12 Dec 2023, Accepted 23 Mar 2024, Published online: 09 Apr 2024

References

  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 1–19. https://doi.org/10.1039/C3RA44507K
  • Ahovuo-Saloranta, A., Forss, H., Hiiri, A., Nordblad, A., & Mäkelä, M. (2020). Pit and fissure sealants versus fluoride varnishes for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database of Systematic Reviews, 11(11), CD003067. https://doi.org/10.1002/14651858.CD003067.pub4
  • Ahovuo-Saloranta, A., Hiiri, A., Nordblad, A., Worthington, H., & Mäkelä, M. (2004). Pit and fissure sealants for preventing dental decay in the permanent teeth of children and adolescents. The Cochrane Database of Systematic Reviews, 3(3), CD001830. https://doi.org/10.1002/14651858.CD001830.pub2
  • Al-Mosawi, R. M., & Al-Badr, R. M. (2017). The study effects of dental composite resin as antibacterial agent which contain nanoparticles of zinc oxide on the bacteria associated with oral infection. IOSR Journal of Dental and Medical Sciences, 16(01), 49–55. https://doi.org/10.9790/0853-1601014955
  • An, N. N., & Le Chi, P. T. (2023). Extraction of microcrystalline cellulose from cotton fiber, and application to block natural rubber as reinforcing agent. Vietnam Journal of Chemistry, 61(S2), 73–80. https://doi.org/10.1002/vjch.202300070
  • Awah, N. S., Agu, K. C., Okorie, C. C., Okeke, C. B., Iloanusi, C. A., Irondi, C. R., Udemezue, O. I., Kyrian-Ogbonna, A. E., Anaukwu, C. G., Eneite, H. C. and Ifediegwu, M. C. (2016). In-vitro Assessment of the Antibacterial Quality of Some Commonly Used Herbal and Non-herbal Toothpastes on Streptococcus mutans. Open Journal of Dentistry and Oral Medicine, 4(2), 21–25.
  • Aydin Sevinç, B., & Hanley, L. (2010). Antibacterial activity of dental composites containing zinc oxide nanoparticles. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 94(1), 22–31. https://doi.org/10.1002/jbm.b.31620
  • Cai, J., Chen, J., Zhang, Q., Lei, M., He, J., Xiao, A., Ma, C., Li, S., & Xiong, H. (2016). Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: Mechanical and optical properties. Carbohydrate Polymers, 140, 238–245. https://doi.org/10.1016/j.carbpol.2015.12.039
  • Cheng, L., Weir, M. D., Xu, H. H., Kraigsley, A. M., Lin, N. J., Lin-Gibson, S., & Zhou, X. (2012). Antibacterial and physical properties of calcium–phosphate and calcium–fluoride nanocomposites with chlorhexidine. Dental Materials: Official Publication of the Academy of Dental Materials, 28(5), 573–583. https://doi.org/10.1016/j.dental.2012.01.006
  • Chung, K. H., & Greener, E. (1990). Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. Journal of Oral Rehabilitation, 17(5), 487–494. https://doi.org/10.1111/j.1365-2842.1990.tb01419.x
  • Chung, S., Yap, A., Chandra, S., & Lim, C. (2004). Flexural strength of dental composite restoratives: Comparison of biaxial and three‐point bending test. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 71(2), 278–283. https://doi.org/10.1002/jbm.b.30103
  • Davari, A., Mosaddegh, A., Daneshkazemi, A., Frahat, F., Hakimzadeh, A., & Abbasi, S. (2022). Evaluation of Shear Bond Strength and Antimicrobial Effects of Resin-Modified Glass Ionomer Containing Titanium Oxide and Silver Nanoparticles. Journal of Dental School, Shahid Beheshti University of Medical Sciences, 40(1), 1–6.
  • Farahbakhsh, N., Roodposhti, P. S., Ayoub, A., Venditti, R. A., & Jur, J. S. (2015). Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. Journal of Applied Polymer Science, 132(17).
  • Farrugia, C., Cassar, G., Valdramidis, V., & Camilleri, J. (2015). Effect of sterilization techniques prior to antimicrobial testing on physical properties of dental restorative materials. Journal of Dentistry, 43(6), 703–714. https://doi.org/10.1016/j.jdent.2015.03.012
  • Fei, X., Li, Y., Weir, M. D., Baras, B. H., Wang, H., Wang, S., Sun, J., Melo, M. A., Ruan, J. & Xu, H. H. (2020). Novel pit and fissure sealant containing nano-CaF2 and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function. Dental Material, 36(9), 1241–1253. https://doi.org/10.1016/j.dental.2020.05.010
  • Halder, E., Chattoraj, D., & Das, K. (2005). Adsorption of biopolymers at hydrophilic cellulose–water interface. Biopolymers, 77(5), 286–295. https://doi.org/10.1002/bip.20232
  • Hamilton, M. F., Otte, A. D., Gregory, R. L., Pinal, R., Ferreira-Zandoná, A., & Bottino, M. C. (2015). Physicomechanical and antibacterial properties of experimental resin‐based dental sealants modified with nylon‐6 and chitosan nanofibers. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103(8), 1560–1568. https://doi.org/10.1002/jbm.b.33342
  • Hassabo, A. G., Salama, M., Mohamed, A. L., & Popescu, C. (2015). Ultrafine wool and cotton powder and their characteristics. Journal of Natural Fibers, 12(2), 141–153. https://doi.org/10.1080/15440478.2014.903819
  • Hojati, S. T., Alaghemand, H., Hamze, F., Babaki, F. A., Rajab-Nia, R., Rezvani, M. B., Kaviani, M., & Atai, M. (2013). Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dental Materials, 29(5), 495–505.
  • Ibrahim, I. K., Hussin, S. M., & Al-Obaidi, Y. (2015). Extraction of cellulose nano crystalline from cotton by ultrasonic and its morphological and structural characterization. American Chemical Science Journal, 9(3), 1–7. https://doi.org/10.9734/ACSJ/2015/20031
  • Imazato, S. (2003). Antibacterial properties of resin composites and dentin bonding systems. Dental Materials: Official Publication of the Academy of Dental Materials, 19(6), 449–457. https://doi.org/10.1016/s0109-5641(02)00102-1
  • Kalia, S., Kaith, B., Sharma, S., & Bhardwaj, B. (2008). Mechanical properties of flax-g-poly (methyl acrylate) reinforced phenolic composites. Fibers and Polymers, 9(4), 416–422. https://doi.org/10.1007/s12221-008-0067-4
  • Kervanto-Seppälä, S., Pietilä, I., Meurman, J. H., & Kerosuo, E. (2009). Pit and fissure sealants in dental public health–application criteria and general policy in Finland. BMC Oral Health, 9(1), 5. https://doi.org/10.1186/1472-6831-9-5
  • Klapdohr, S., & Moszner, N. (2005). New inorganic components for dental filling composites. Monatshefte für Chemie - Chemical Monthly, 136(1), 21–45. https://doi.org/10.1007/s00706-004-0254-y
  • Lai, C.-C., Lin, C.-P., & Wang, Y.-L. (2022). Development of antibacterial composite resin containing chitosan/fluoride microparticles as pit and fissure sealant to prevent caries. Journal of Oral Microbiology, 14(1), 2008615. https://doi.org/10.1080/20002297.2021.2008615
  • Leikin, J., & Paloucek, F. (2008). Informa, 9, 184.
  • Lin, N. J., Drzal, P. L., & Lin-Gibson, S. (2007). Two-dimensional gradient platforms for rapid assessment of dental polymers: A chemical, mechanical and biological evaluation. Dental Materials: Official Publication of the Academy of Dental Materials, 23(10), 1211–1220. https://doi.org/10.1016/j.dental.2006.11.020
  • Lynch, C. D., Opdam, N. J., Hickel, R., Brunton, P. A., Gurgan, S., Kakaboura, A., Shearer, A.C., Vanherle, G., & Wilson, N. H. (2014). Guidance on posterior resin composites: Academy of operative dentistry-European section. Journal of Dentistry, 42(4), 377–383. https://doi.org/10.1016/j.jdent.2014.01.009
  • Mccabe, J. F., & Rusby, S. (2004). Water absorption, dimensional change and radial pressure in resin matrix dental restorative materials. Biomaterials, 25(18), 4001–4007. https://doi.org/10.1016/j.biomaterials.2003.10.088
  • Morphis, T. L., Toumba, J. K., & Lygidakis, N. A. (2000). Fluoride pit and fissure sealants: A review. International Journal of Paediatric Dentistry, 10(2), 90–98. https://doi.org/10.1046/j.1365-263x.2000.00177.x
  • Naaman, R., El-Housseiny, A. A., & Alamoudi, N. (2017). The use of pit and fissure sealants—A literature review. Dentistry Journal, 5(4), 34. https://doi.org/10.3390/dj5040034
  • Nishimura, T., Shinonaga, Y., Nagaishi, C., Imataki, R., Takemura, M., Kagami, K., Abe, Y., Harada, K., & Arita, K. (2019). Effects of powdery cellulose nanofiber addition on the properties of glass ionomer cement. Materials, 12(19), 3077. https://doi.org/10.3390/ma12193077
  • Osorio, E., Osorio, R., Davidenko, N., Sastre, R., Aguilar, J. A., & Toledano, M. (2007). Polymerization kinetics and mechanical characterization of new formulations of light‐cured dental sealants. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 80(1), 18–24. https://doi.org/10.1002/jbm.b.30563
  • Ranganathan, N., Oksman, K., Nayak, S. K., & Sain, M. (2015). Regenerated cellulose fibers as impact modifier in long jute fiber reinforced polypropylene composites: Effect on mechanical properties, morphology, and fiber breakage. Journal of Applied Polymer Science, 132(3). https://doi.org/10.1002/app.41301
  • Reddy, N., & Yang, Y. (2009). Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology, 100(14), 3563–3569. https://doi.org/10.1016/j.biortech.2009.02.047
  • Sabir, M., Ali, A., Siddiqui, U., Muhammad, N., Khan, A. S., Sharif, F., … Rehman, I. U. (2020). Synthesis and characterization of cellulose/hydroxyapatite based dental restorative composites. Journal of Biomaterials Science. Polymer Edition, 31(14), 1806–1819. https://doi.org/10.1080/09205063.2020.1777827
  • Saini, S., Meena, A., Yadav, R., & Patnaik, A. (2023). Investigation of physical, mechanical, thermal, and tribological characterization of tricalcium phosphate and zirconia particulate reinforced dental resin composite materials. Tribology International, 181, 108322. https://doi.org/10.1016/j.triboint.2023.108322
  • Simonsen, R. J. (2011). From prevention to therapy: Minimal intervention with sealants and resin restorative materials. Journal of Dentistry, 39 (Suppl. 2), S27–S33. https://doi.org/10.1016/j.jdent.2011.11.001
  • Singh, S., Dutt, D., & Mishra, N. C. (2020). Cotton pulp for bone tissue engineering. Journal of Biomaterials Science. Polymer Edition, 31(16), 2094–2113. https://doi.org/10.1080/09205063.2020.1793872
  • Sun, J., Forster, A. M., Johnson, P. M., Eidelman, N., Quinn, G., Schumacher, G., … Wu, W.-L. (2011). Improving performance of dental resins by adding titanium dioxide nanoparticles. Dental Materials: Official Publication of the Academy of Dental Materials, 27(10), 972–982. https://doi.org/10.1016/j.dental.2011.06.003
  • Takahashi, Y., Imazato, S., Kaneshiro, A. V., Ebisu, S., Frencken, J. E., & Tay, F. R. (2006). Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dental Materials: Official Publication of the Academy of Dental Materials, 22(7), 647–652. https://doi.org/10.1016/j.dental.2005.08.003
  • Yadav, R., & Kumar, M. (2019). Dental restorative composite materials: A review. Journal of Oral Biosciences, 61(2), 78–83. https://doi.org/10.1016/j.job.2019.04.001
  • Yadav, R., & Kumar, M. (2020). Investigation of the physical, mechanical and thermal properties of nano and microsized particulate-filled dental composite material. Journal of Composite Materials, 54(19), 2623–2633. https://doi.org/10.1177/0021998320902212
  • Yadav, R., Meena, A., & Patnaik, A. (2022). Biomaterials for dental composite applications: A comprehensive review of physical, chemical, mechanical, thermal, tribological, and biological properties. Polymers for Advanced Technologies, 33(6), 1762–1781. https://doi.org/10.1002/pat.5648
  • Yadav, R., Singh, M., Shekhawat, D., Lee, S.-Y., & Park, S.-J. (2023). The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Composites Part A: Applied Science and Manufacturing, 175, 107775. https://doi.org/10.1016/j.compositesa.2023.107775
  • Yue, Y., Han, G., & Wu, Q. (2013). Transitional properties of cotton fibers from cellulose I to cellulose II structure. BioResources, 8(4), 6460–6471. https://doi.org/10.15376/biores.8.4.6460-6471
  • Zhang, J., Wu, R., Fan, Y., Liao, S., Wang, Y., Wen, Z., & Xu, X. (2014). Antibacterial dental composites with chlorhexidine and mesoporous silica. Journal of Dental Research, 93(12), 1283–1289. https://doi.org/10.1177/0022034514555143
  • Zulkifli, F. H., Hussain, F. S. J., Harun, W., & Yusoff, M. M. (2019). Highly porous of hydroxyethyl cellulose biocomposite scaffolds for tissue engineering. International Journal of Biological Macromolecules, 122, 562–571. https://doi.org/10.1016/j.ijbiomac.2018.10.156